Advances in Fatigue and Fracture Mechanics

June 2nd - 6th, 2014,

Aalto University,

Espoo, Finland

given by

Prof. **Darrell Socie** University of Illinois, USA

Prof. Grzegorz Glinka

University of Waterloo, Canada

Bibliography

1. Bannantine, J., Corner, Handrock, <u>Fundamentals of Metal Fatigue Analysis</u>, Prentice-Hall, 1990.... (good general reference)

2. Dowling, N., <u>Mechanical Behaviour of Materials</u>, Prentice Hall, 2011, 3rd edition (middle chapters are a great overview of most recent approaches to fatigue analysis),

3. Stephens, R.I., Fatemi, A., Stephens, A.A., Fuchs, H.O., <u>Metal Fatigue in Engineering</u>, John Wiley, 2001.... (good general reference),

4. M. Janssen, J. Zudeima, R.J.H. Wanhill, <u>Fracture Mechanics</u>, VSSD, The Netherlands, 2006 (understandable, rigorous, mechanics perspective),

5. Socie, D.F., and Marquis, G.B., <u>Multiaxial Fatigue</u>, Society of Automotive Engineers, Inc., Warrendale, PA, 2000

5. Haibach, E., Betriebsfestigkeit, VDI Verlag, Dusseldorf, 1989 (in German).

6. Bathias, C., and Pineau, A., **Fatigue des Materiaux et des Structures**, Hermes, Paris, 2008 (in French and English),

7. Radaj, D., <u>Design and Analysis of Fatigue Resistant Structures</u>, Halsted Press, 1990, (Complete, civil and automotive engineering analysis perspective),

8. V.A. Ryakhin and G.N. Moshkarev, **Durability and Stability of Welded Structures in Earth Moving Machinery**", **Mashinostroenie**, Moscow, 1984 (in Russian, cranes and earth moving machinery),

9. A. Chattopadhyay, G. Glinka, M. El-Zein, J. Qian and R. Formas, Stress Analysis and Fatigue of Welded Structures, **Welding in the World**, (IIW), vol. 55, No. 7-8, 2011, pp. 2-21.

Mechanical Engineer – yesterday and today.....

Slide ruler

Calculator

Computer PC/laptop

≈ 1-2 operation/min.

Before yesterday

≈ 1-10 operation/min.

≈ 10[?] operation/min.

Today

© 2011 Grzegorz Glinka. All rights reserved.

Yesterday

Contemporary Fatigue Analysis Methods

(basics concepts and assumptions)

Information Path for Strength and Fatigue Life Analysis

Stress Parameters Used in Fatigue Analyses

 S_n – net nominal stress; S – gross nominal stress σ^{e}_{peak} – local linear-elastic notch-tip stress σ^{a}_{peak} – local actual elastic-plastic notch-tip stress $K_t = \sigma^{e}_{peak} / S_n$ – stress concentration factor

- $\mathbf{K}-\text{stress}$ intensity factor
 - $K = S \sqrt{\pi a} \cdot Y$

What stress parameter is needed for the Fracture Mechanics based (da/dN-ΔK) fatigue analysis?

The Stress Intensity Factor K characterizing the stress field in the crack tip region is needed!

The K factor can be obtained from:

- ready made Handbook solutions (easy to use but often inadequate in practice)

- from the near crack tip stress $\sigma(x)$ distribution or the displacement data obtained from FE analysis of a cracked body *(tedious)*

- from the weight function by using the FE stress analysis data of un-cracked body (versatile and suitable for FCG analysis)

Loads and stresses in a structure

The Most Popular Methods for Fatigue Life Analysis - *outlines*

- Stress-Life Method or the S N approach; uses the nominal or simple engineering stress 'S' to quantify fatigue damage
- Strain-Life Method or the ε N approach; uses the local notch tip strains and stresses to quantify the fatigue damage
- Fracture Mechanics or the da/dN ΔK approach; uses the stress intensity factor to quatify the fatigue crack growth rate

Information path for fatigue life estimation based on the S-N method

The Similitude Concept in the S-N Method

The **Similitude Concept** states that if the nominal stress histories in the structure and in the test specimen are the same, then the fatigue response in each case will also be the same and can be described by the generic S-N curve. It is assumed that such an approach accounts also for the stress concentration, loading sequence effects, manufacturing etc.

Steps in Fatigue Life Prediction Procedure Based on the S-N Approach

Steps in Fatigue Life Prediction Procedure Based on the S-N Approach (continued)

The linear hypothesis of Fatigue Damage Accumulation

The FALSN fatigue life estimation software – Typical input and output data

The scatter in fatigue:Fatigue S-N curves for assigned probability of failure; P-S-N curves

Probabilistic fatigue life assessment

Weibull Plot {L} Characteristic regions of cumulative probability of the fatigue life distribution

Information path for fatigue life estimation based on the ε-N method

© 2008 Grzegorz Glinka. All rights reserved.

The Similitude Concept in the $\epsilon - N$ Method

The **Similitude Concept** states that if the local notch-tip strain history in the notch tip and the strain history in the test specimen are the same, then the fatigue response in the notch tip region and in the specimen will also be the same and can be described by the material strain-life (ϵ -N) curve.

Steps in fatigue life prediction procedure based on the ε - N approach

(continued). Steps in fatigue life prediction procedure based on the ε -N approach © 2008 Grzegorz Glinka. All rights reserved.

Three basic sets of input data for the evaluation of the Fatigue Crack Initiation Life and Reliability (the $\epsilon - N$ approach)

Information path for fatigue life estimation based on the da/dN-ΔK method

The Similitude Concept in the da/dN – ΔK Method

intensity K for a crack in the actual component and in the test specimen are the same, then the fatigue crack growth response in the component and in the specimen will also be the same and can be described by the material fatigue crack growth curve da/dN - Δ K.

Steps in the Fatigue Life Prediction Procedure Based on the da/dN-∆K Approach

Steps in Fatigue Life Prediction Procedure Based on the da/dN-∆K Approach (cont'd)

Probabilistic analysis using MC simulation

The FALPR statistical simulation flow chart for the analysis of fatigue crack growth© 2008 Grzegorz Glinka. All rights reserved.35

Irregular geometrical shape of a real fatigue crack

Global and Local Approaches to Stress Analysis and Fatigue

Stress state near the notch tip (on the symmetry line)

Stress state in the disk at the blade-disk interface

Stresses concentration in axis-symmetric notched body

Stresses concentration in a prismatic notched body

How to get the nominal stress from the Finite Element Method stress data?

Loads and stresses in a structure

Loads and Stresses

The load, the nominal stress, the local peak stress and the stress concentration factor

 $\sigma_n = \frac{F}{A};$ σ_{peak} Stress $\sigma_{\mathbf{n}}$ $\sigma_n = k_F F;$ V d_n Т $\sigma_{n,i} = k_F F_i; \qquad \sigma_{peak,i} = h_F F_i;$

Axial load – linear elastic analysis

 $\sigma_{peak} = h_F F;$

Analytical, FEM $k_F = \frac{1}{A_{not}};$ $h_F = \frac{\sigma_{peak}}{F};$

Hndbk

 $h_F = k_F K_t;$

Loads and Stresses

The load, the nominal stress, the local peak stress and the stress concentration factor

Bending load – linear elastic analysis

$$\sigma_n = \frac{M \cdot c_{net}}{I_{net}};$$

$$\sigma_n = k_M M;$$

$$k_M = \frac{c_{net}}{I_{net}}; \implies \sigma_{n,i} = k_M M_i;$$

 $\sigma_{peak,i} = h_M M_i$ or $\sigma_{peak,i} = k_M M_i \cdot K_t^b$

Stress Concentration Factors in Fatigue Analysis

The nominal stress and the stress concentration factor in simple load/geometry configurations

Simple axial load

K_t – stress concentration factor (net or gross, net K_t ≠ gross K_t !!)

- σ_{peak} stress at the notch tip
- σ_n net nominal stress
- S gross nominal stress

Stress concentration factors for notched machine components

(B.J. Hamrock et. al., ref.(26)

Stress concentration factors for notched machine components

Stress concentration & stress distributions in weldments

Various stress distributions in a T-butt weldment with transverse fillet welds;

- Normal stress distribution in the weld throat plane (A),
- Through the thickness normal stress distribution in the weld toe plane (B),
- Through the thickness normal stress distribution away from the weld (C),
- Normal stress distribution along the surface of the plate (D),
- Normal stress distribution along the surface of the weld (E),
- Linearized normal stress distribution in the weld toe plane (F).

Stress concentration factor for a butt weldment under axial loading

where : $W = t + 2h + 0.6h_{p}$

Range of application - reasonably designed weldments, (K.lida and T. Uemura, ref. 14)

Stress concentration factor for a T-butt weldment under tension load; (non-load carrying fillet weld)

Cyclic Loads and Cyclic Stress Patterns (histories) in Engineering Objects

Loads and Stresses

The load, the nominal stress, the local peak stress and the stress concentration factor

Simultaneous axial and bending load

$$\sigma_{n,i} = k_F F_i + k_M M_i;$$

$$\sigma_{peak,i} = k_F F_i \cdot K_t^t + k_M M_i K_t^b;$$
or
$$\sigma_{peak,i} = h_F F_i + h_M M_i;$$

 $k_{F}^{},\,k_{M}^{};\,\,$ From simple analytical stress analysis

 K_t^t, K_t^b ; From stress concentration handbooks

 $h_F, h_M;$ From detail FEM analysis

The load W and the nominal stress σ_n in an railway axle

such as the railway axle, the nominal stress and the local peak stress are the same!

Fluctuations and complexity of the stress state at the notch tip

How to establish the nominal stress history?

a) The analytical or FE analysis should be carried out for one characteristic load magnitude, i.e. P=1, $M_b = 1$, T=1 in order to establish the proportionality factors, k_P , k_M , and k_T such that:

$$\sigma_{n}^{P} = k_{P} \cdot P; \quad \sigma_{n}^{M} = k_{M} \cdot M_{b}; \quad \tau_{n}^{T} = k_{T} \cdot T$$

b) The peak and valleys of the nominal stress history $\sigma_{n,i}$ are determined by scaling the peak and valleys load history P_i , $M_{b,i}$ and T_i by appropriate proportionality factors k_{P} , k_{M} , and k_{T} such that:

$$\boldsymbol{\sigma}_{n,i}^{P} = \boldsymbol{k}_{P} \cdot \boldsymbol{P}_{i} \quad \boldsymbol{\sigma}_{n,i}^{M} = \boldsymbol{k}_{M} \cdot \boldsymbol{M}_{b,i}; \quad \boldsymbol{\tau}_{n,i}^{T} = \boldsymbol{k}_{T} \cdot \boldsymbol{T}_{i}$$

c) In the case of proportional loading the normal peak and valley stresses can be added and the resultant nominal normal stress history can be established. Because all load modes in proportional loading have the same number of simultaneous reversals the resultant history has also the same number of resultant reversals as any of the single mode stress history.

$$\sigma_{n,i} = k_P \cdot P_i \cdot k_M \cdot M_{b,i};$$

d) In the case of non-proportional loading the normal stress histories (and separately the shear stresses) have to be added as time dependent processes. Because each individual stress history has different number of reversals the number of reversals in the resultant stress history can be established after the final superposition of all histories.

$$\boldsymbol{\sigma}_{\boldsymbol{n}}(t_i) = \boldsymbol{k}_{\boldsymbol{P}} \cdot \boldsymbol{P}(t_i) + \boldsymbol{k}_{\boldsymbol{M}} \cdot \boldsymbol{M}_{\boldsymbol{b}}(t_i)$$

Superposition of nominal stress histories induced by two independent loading modes

Wind load and stress fluctuations in a wind turbine blade

Characteristic load/stress history in the aircraft wing skin

a) Ground loads on the wings, b) Distribution of the wing bending moment induced by the ground load, c) Stress in the lower wing skin induced by the ground and flight loads

Loads and stresses in a structure

Loading and stress histories

How to get the nominal stress σ_n from the Finite Element method stress data?

Notched shaft under axial, bending and torsion load

How to get the resultant stress distribution from the Finite Element stress data? (Notched shaft under axial, bending load)

Cyclic nominal stress and corresponding fluctuating stress distribution

The stress state at the weld toe

- Multiaxial state of stress at weld toe
- One shear and two normal stresses
- Due to stress concentration, σ_{xx} is the largest component
 - Predominantly responsible for fatigue damage

Determination of the nominal, σ_n , and the hot spot stress , σ_{hs} , from 3D-FE stress analysis data

a) Stress distribution in the critical cross section near the cover plate ending and the nominal or the hot spot stress σ_n (independent of length L) and σ_{hs} (independent of length L),

b) Stress distribution in the critical plane near the ending of a vertical attachment (gusset) and the nominal or the hot spot stress σ_n (dependent on length L) or σ_{hs} (independent of length L)

The Nominal Stress σ_n versus the local Hot Spot Stress σ_{hs}

Example: Preparation and Analysis of Representative Stress/Load History:

The Rainflow Cycle Counting Procedure

Stress/Load Analysis - Cycle Counting Procedure and Presentation of Results

The measured stress, strain, or load history is given usually in the form of a time series, i.e. a sequence of discrete values of the quantity measured in equal time intervals. When plotted in the stress-time space the discrete point values can be connected resulting in a continuously changing signal. However, the time effect on the fatigue performance of metals (except aggressive environments) is negligible in most cases. Therefore the excursions of the signal, represented by amplitudes or ranges, are the most important quantities in fatigue analyses. Subsequently, the knowledge of the reversal point values, denoted with large diamond symbols in the next Figure, is sufficient for fatigue life calculations. For that reason the intermediate values between subsequent reversal points can be deleted before any further analysis of the loading/stress signal is carried out. An example of a signal represented by the reversal points only is shown in slide no. 141. The fatigue damage analysis requires decomposing the signal into elementary events called 'cycles'. Definition of a loading/stress cycle is easy and unique in the case of a constant amplitude signal as that one shown in the figures. A stress/loading cycle, as marked with the thick line, is defined as an excursion starting at one point and ending at the next subsequent point having exactly the same magnitude and the same sign of the second derivative. The maximum, minimum, amplitude or range and mean stress values characterise the cycle. 1 cvcle

$$\Delta \sigma = \left| \sigma_{\max} - \sigma_{\min} \right| - stress range \qquad \sigma_{\max} \qquad \sigma$$

Unfortunately, the cycle definition is not simple in the case of a variable amplitude signal. The only nondubious quantity, which can easily be defined, is a reversal, example of which is marked with the thick line in the Figures below.

Removing material from a clay mine in Tennessee

Mean Stress : Sm(1) = -21.59 MPa, Mean Stress Levels: 10 Range [MPa] Level Cycles 117.7 1 0 2 105.93 0 94.16 3 0 82.39 4 0 70.62 5 0 58.85 6 0 47.08 7 0 Omitted cycles: 1 Stress Range Levels: 10

Bending Moment measurements obtained at constant time intervals

Bending Moment signal represented by the reversal point values

Constant and Variable Amplitude Stress Histories; Definition of the Stress Cycle & Stress Reversal

Stress Reversals and Stress Cycles in a Variable Amplitude Stress History

The *reversal* is simply an excursion between two-consecutive reversal points, i.e. an excursion between subsequent peak and valley or valley and peak.

In recent years the *rainflow* cycle counting method has been accepted world-wide as the most appropriate for extracting stress/load cycles for fatigue analyses. The *rainflow* cycle is defined as a stress excursion, which when applied to a deformable material, will generate a closed *stress-strain hysteresis loop*. It is believed that the surface area of the stress-strain hysteresis loop represents the amount of damage induced by given cycle. An example of a short stress history and its *rainflow counted cycles* content is shown in the following Figure.

Stress History and the "Rainflow" Counted Cycles

A *rainflow counted cycle* is identified when any two adjacent reversals in the stress history satisfy the following relation:

$$ABS\left|\sigma_{i-1}-\sigma_{i}\right| \leq ABS\left|\sigma_{i}-\sigma_{i+1}\right|$$

The Mathematics of the Cycle Rainflow Counting Method for Fatigue Analysis of Fluctuating Stress/Load Histories

A *rainflow counted cycle* is identified when any two adjacent reversals in thee stress history satisfy the following relation:

$$ABS |\sigma_{i-1} - \sigma_i| \leq ABS |\sigma_i - \sigma_{i+1}|$$

The stress amplitude of such a cycle is:

The stress range of such a cycle is:

$$\sigma_a = \frac{ABS \left| \sigma_{i-1} - \sigma_i \right|}{2}$$

$$\Delta \boldsymbol{\sigma} = \boldsymbol{ABS} \left| \boldsymbol{\sigma}_{i-1} - \boldsymbol{\sigma}_{i} \right|$$

The mean stress of such a cycle is:

$$\sigma_m = \frac{\sigma_{i-1} + \sigma_i}{2}$$

The rainflow cycle counting procedure - example

Determine stress ranges, ΔS_i , and corresponding mean stresses, S_{mi} for the stress history given below. Use the 'rainflow' counting procedure.

S_i= 0, 4, 1, 3, 2, 6, -2, 5, 1, 4, 2, 3, -3, 1, -2 (units: MPa·10²)

The ASTM rainflow counting procedure

- 1. Find the reversing point with highest absolute stress magnitude,
- 2. The part of the stress history before the maximum absolute attach to the end of the history,
- 3. Perform the rainflow counting on the re-arranged stress history, i.e. from maximum to maximum

The ASTM modification of the Stress History

The original stress history

The Modified Stress History according to the ASTM

Start counting from the point No. 2 !!

Cycles counted –ASTM method

1.
$$\Delta \sigma_{6-7} = 1; \quad \sigma_{m,6-7} = 2.5;$$

2. $\Delta \sigma_{4-5} = 3; \quad \sigma_{m,4-5} = 2.5;$
3. $\Delta \sigma_{13-14} = 1; \quad \sigma_{m,10-11} = 2.5;$
4. $\Delta \sigma_{11-12} = 3; \quad \sigma_{m,11-12} = 2.5;$
5. $\Delta \sigma_{2-3} = 7; \quad \sigma_{m,2-3} = 1.5;$
6. $\Delta \sigma_{9-10} = 3; \quad \sigma_{m,9-10} = -0.5;$
7. $\Delta \sigma_{1-8} = 9; \quad \sigma_{m-1-8} = 1.5;$

Extracted rainflow cycles, $\Delta \sigma - \Delta \sigma_m$

Stress range, Δσ	$\Delta\sigma/\sigma_m$	-32	-22	-13	-3.2	6.44	16.1	25.7	35.3	45	54	64.1	73.7	83.3	92.9	103	112	122	131	141	151	Δσ
	298.8	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
	283.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	268.9	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
	254	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
	239	0	0	0	0	0	0	0	1	2	2	0	0	0	0	0	0	0	0	0	0	5
	224.1	0	0	0	0	0	0	0	0	2	2	1	0	0	0	0	0	0	0	0	0	5
	209.2	0	0	0	0	0	0	0	3	4	5	2	0	0	0	0	0	0	0	0	0	14
	194.2	0	0	0	0	0	1	0	1	7	2	0	0	0	0	0	0	0	0	0	0	11
	179.3	0	0	0	0	0	0	1	0	4	4	0	0	0	0	0	0	0	0	0	0	9
	164.3	0	0	0	0	1	0	0	0	3	1	0	0	0	0	0	0	0	0	0	0	5
	149.4	0	0	0	0	0	0	1	0	0	0	0	2	1	0	0	0	0	0	0	0	4
	134.5	0	0	0	0	0	0	0	0	0	0	0	4	1	1	0	0	0	0	0	0	6
	119.5	0	1	1	0	0	0	0	0	0	0	3	1	5	1	2	0	0	0	0	0	14
	104.6	0	0	1	2	1	0	0	0	0	2	4	3	7	3	2	1	2	1	0	0	29
	89.64	0	1	2	3	7	2	0	0	0	1	2	8	10	7	5	6	2	1	0	0	57
	74.7	1	1	3	4	3	5	0	1	2	2	10	18	23	20	17	11	4	1	0	0	126
	59.76	2	1	5	7	4	1	4	5	1	2	11	20	34	31	31	28	9	7	1	1	205
	44.82	1	6	9	7	9	7	10	3	3	8	15	37	49	64	62	41	16	11	2	1	361
	29.88	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. 10	14.94	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Mean stress, σ_m

854

Total number of cycles, N=854

Day 1

The End