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Mechanical Engineer – yesterday and today……

Slide ruler Calculator Computer PC/laptop

 1-2 operation/min.  1-10 operation/min.  10? operation/min.

Before yesterday Yesterday Today

http://www.vintagecalculators.com/html/texas_instruments_ti-30.html
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DAY 1

Contemporary Fatigue Analysis
Methods

(basics concepts and assumptions)



Information Path for Strength and Fatigue Life Analysis
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Stress Parameters Used in Fatigue Analyses
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What stress parameter is needed for the Fracture
Mechanics based (da/dN- K) fatigue analysis?
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S The Stress Intensity Factor K characterizing
the stress field in the crack tip region is
needed!

The K factor can be obtained from:
- ready made Handbook solutions (easy to use
but often inadequate in practice)

- from the near crack tip stress (x)
distribution or the displacement data obtained
from FE analysis of a cracked body (tedious)

- from the weight function by using the FE
stress analysis data of un-cracked body
(versatile and suitable for FCG analysis)
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Loads and stresses in a structure
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Load F

peak
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The Most Popular Methods for
Fatigue Life Analysis - outlines

• Stress-Life Method or the S  - N approach;
uses the nominal or simple engineering stress ‘ S ‘ to
quantify fatigue damage

• Strain-Life Method or the - N approach;
uses the local notch tip strains and stresses to quantify
the fatigue damage

• Fracture Mechanics or the da/dN - K approach;
uses the stress intensity factor to quatify the fatigue
crack growth rate
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Information path for fatigue life estimation based on
the S-N method
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The Similitude Concept states that if the nominal stress histories in the structure and in the test
specimen are the same, then the fatigue response in each case will also be the same and can be
described by the generic S-N curve. It is assumed that such an approach accounts also for the stress
concentration, loading sequence effects, manufacturing etc.
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Steps in Fatigue Life Prediction Procedure Based on the
S-N Approach

The S – N  method
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e) Standard S-N curves
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The linear hypothesis of Fatigue Damage Accumulation
(the Miner rule)
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The FALSN fatigue life estimation software – Typical input and output data

Weldment
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The scatter in fatigue:Fatigue S-N curves for assigned probability
of failure; P-S-N curves
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COMPUTING of   Tj
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Over designedUn-satisfactory Most
frequent

Characteristic regions of cumulative
probability of the fatigue life distribution
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a) Specimen

b) Notched component
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The Similitude Concept states that if
the local notch-tip strain history in the
notch tip and the strain history in the
test specimen are the same, then the
fatigue response in the notch tip region
and in the specimen will also be the
same and can be described by the
material strain-life ( -N) curve.

The Similitude Concept in the – N Method
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Steps in fatigue life prediction procedure based on
the - N approach

a) Structure
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c) Section with welded joint
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Fatigue damage:
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(continued). Steps in fatigue life prediction procedure based on the -N approach
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Three basic sets of input data for the evaluation of the Fatigue Crack
Initiation Life and Reliability (the – N approach)
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Information path for fatigue life estimation based on
the da/dN- K method
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The Similitude Concept states that if the stress
intensity K for a crack in the actual component
and in the test specimen are the same, then the
fatigue crack growth response in the component
and in the specimen will also be the same and
can be described by the material fatigue crack
growth curve da/dN - K.
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The Similitude Concept in the da/dN – K Method
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Stress intensity factor, K
(indirect method)
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The FALPR statistical simulation flow chart for the analysis of fatigue crack growth
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Irregular geometrical shape of a real fatigue crack
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Welded Joint with Load = 4000 lb (ai/ci=0.286)
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Global and Local Approaches to Stress
Analysis and Fatigue
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Stresses concentration in a prismatic notched body
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How to get the nominal stress from the Finite
Element Method stress data?

The smallest optimum element
size < ¼r !!

r
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Loads and stresses in a structure
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Loads and Stresses
The load, the nominal stress, the local peak stress and the stress concentration factor
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Loads and Stresses
The load, the nominal stress, the local peak stress and the stress concentration factor
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Stress Concentration Factors in Fatigue Analysis
The nominal stress and the stress concentration factor in simple load/geometry configurations
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Stress concentration factors for notched machine components

(B.J. Hamrock et. al., ref.(26)
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Stress concentration factors for notched machine components

(B.J. Hamrock et. al.
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Various stress distributions in a T-butt weldment with transverse fillet welds;
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• Normal stress distribution in the weld throat plane (A),
• Through the thickness normal stress distribution in the weld toe plane (B),
• Through the thickness normal stress distribution away from the weld (C),
• Normal stress distribution along the surface of the plate (D),
• Normal stress distribution along the surface of the weld (E),
• Linearized normal stress distribution in the weld toe plane (F).

Stress concentration & stress distributions in weldments
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Stress concentration factor for a T-butt
weldment under tension load; (non-load carrying fillet weld)
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Cyclic Loads and Cyclic Stress Patterns
(histories) in Engineering Objects
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Loads and Stresses
The load, the nominal stress, the local peak stress and the stress concentration factor
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How to establish the nominal stress history?
a) The analytical or FE analysis should be carried out for one characteristic load magnitude, i.e.
P=1, Mb =1, T=1 in order to establish the proportionality factors, kP, kM, and kT such that:

;;P M T
n n nP M Tbk P k M k T

b) The peak and valleys of the nominal stress history n,,i are determined by scaling the peak and
valleys load history Pi, Mb,I and Ti by appropriate proportionality factors kP, kM, and kT such that:

, , ,;,
P M T
n i n i n i iiP M Tb ik P k M k T

c) In the case of proportional loading the normal peak and valley stresses can be added and the
resultant nominal normal stress history can be established. Because all load modes in proportional
loading have the same number of simultaneous reversals the resultant history has also the same
number of resultant reversals as any of the single mode stress history.

;,, i Mi Pn b ik P k M

d) In the case of non-proportional loading the normal stress histories (and separately the shear
stresses) have to be added as time dependent processes. Because each individual stress history
has different number of reversals the number of reversals in the resultant stress history can be
established after the final superposition of all histories.

ii in P M bt tt k P k M
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Two proportional modes of loading
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Wind load and stress fluctuations in a wind
turbine blade

Note! One reversal of the wind speed results in several stress reversals

Wind speed fluctuations + Blade vibrations Stress fluctuations
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a) Ground loads on the wings, b) Distribution of the wing bending moment induced by the ground
load, c) Stress in the lower wing skin induced by the ground and flight loads

Characteristic load/stress history in the aircraft wing skin
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Loads and stresses in a structure
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Loading and stress histories
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How to get the nominal stress n from the
Finite Element method stress data?

Notched shaft under axial, bending and torsion load

a) Run each load case
separately for an unit
load

b)   Linearize the FE stress
field for each load case
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How to get the resultant stress distribution from the
Finite Element stress data? (Notched shaft under axial, bending load)
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Cyclic nominal stress and corresponding fluctuating stress distribution
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• Multiaxial state of
stress at weld toe

• One shear and two
normal stresses

• Due to stress
concentration, xx is
the largest component
– Predominantly responsible

for fatigue damage
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The stress state at the weld toe



Determination of the nominal, n, and the hot spot
stress , hs, from 3D-FE stress analysis data

a) Stress distribution in the critical cross section near the cover plate ending and the nominal or the
hot spot stress n (independent of length L ) and hs (independent of length L),
b) Stress distribution in the critical plane near the ending of a vertical attachment (gusset) and the
nominal or the hot spot stress n (dependent on length L ) or hs (independent of length L)
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The Nominal Stress n versus the local Hot Spot Stress hs
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Example:
Preparation and Analysis of Representative

Stress/Load History:

The Rainflow Cycle Counting Procedure
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Stress/Load Analysis - Cycle Counting Procedure
and Presentation of Results

The measured stress, strain, or load history is given usually in the form of a time series, i.e. a sequence of
discrete values of the quantity measured in equal time intervals. When plotted in the stress-time space the
discrete point values can be connected resulting in a continuously changing signal. However, the time effect
on the fatigue performance of metals (except aggressive environments) is negligible in most cases.
Therefore the excursions of the signal, represented by amplitudes or ranges, are the most important
quantities in fatigue analyses. Subsequently, the knowledge of the reversal point values, denoted with large
diamond symbols in the next Figure, is sufficient for fatigue life calculations. For that reason the intermediate
values between subsequent reversal points can be deleted before any further analysis of the loading/stress
signal is carried out. An example of a signal represented by the reversal points only is shown in slide no. 141.
The fatigue damage analysis requires decomposing the signal into elementary events called ‘cycles’.
Definition of a loading/stress cycle is easy and unique in the case of a constant amplitude signal as that one
shown in the figures. A stress/loading cycle, as marked with the thick line, is defined as an excursion starting
at one point and ending at the next subsequent point having exactly the same magnitude and the same sign
of the second derivative. The maximum, minimum, amplitude or range and mean stress values characterise
the cycle.

Unfortunately, the cycle definition is not simple in the case of a variable amplitude signal. The only non-
dubious quantity, which can easily be defined, is a reversal, example of which is marked with the thick line in
the Figures below.
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Removing material from a clay mine in Tennessee
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Bending Moment Time Series
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Bending Moment  History - Peaks and Valleys
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Bending Moment signal represented by the reversal point values
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Constant and Variable Amplitude Stress Histories;
Definition of the Stress Cycle & Stress Reversal
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Stress Reversals and Stress Cycles in a Variable
Amplitude Stress History

The reversal is simply an excursion between two-consecutive reversal
points, i.e. an excursion between subsequent peak and valley or valley
and peak.

In recent years the rainflow cycle counting method has been accepted
world-wide as the most appropriate for extracting stress/load cycles for
fatigue analyses. The rainflow cycle is defined as a stress excursion,
which when applied to a deformable material, will generate a closed
stress-strain hysteresis loop. It is believed that the surface area of the
stress-strain hysteresis loop represents the amount of damage induced
by given cycle. An example of a short stress history and its rainflow
counted cycles content is shown in the following Figure.
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Stress History and the “Rainflow” Counted Cycles

1 1i i i iABS ABS

A rainflow counted cycle is identified when any two adjacent reversals in the
stress history satisfy the following relation:
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A rainflow counted cycle is identified when any two adjacent reversals in
thee stress history satisfy the following relation:

1 1i i i iABS ABS
The stress amplitude of such a cycle is:

1

2
i i

a

ABS

The stress range of such a cycle is:

1i iABS

The mean stress of such a cycle is:

1

2
i i

m

The Mathematics of the Cycle Rainflow Counting Method
for Fatigue Analysis of Fluctuating Stress/Load Histories
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The rainflow cycle counting procedure - example

Determine stress ranges, Si, and corresponding mean stresses, Smi for the stress history
given below. Use the ‘rainflow’ counting procedure.

Si= 0, 4, 1, 3, 2, 6, -2, 5, 1, 4, 2, 3, -3, 1, -2 (units: MPa 102)
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The ASTM rainflow counting procedure

1. Find the reversing point with highest absolute stress magnitude,

2. The part of the stress history before the maximum absolute attach to the end of
the history,

3. Perform the rainflow counting on the re-arranged stress history, i.e. from
maximum to maximum

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5

Original stress history

Absolute maximum !
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The ASTM modification of the Stress History
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The Modified Stress History according to the ASTM
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76
76 7 6 ,6 7

3 23 2 1; 2.5;2 2m
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1 8
1 8 1 8 ,1 8

6 36 ( 3) 9; 1.5;2 2m
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Cycles counted –ASTM method
1. 6- 7 =1;    m,6- 7 = 2.5;
2. 4- 5 =3;    m,4- 5 = 2.5;
3. 13- 14=1;    m,10- 11= 2.5;
4. 11- 12=3;    m,11- 12= 2.5;
5. 2- 3 =7;    m,2- 3 = 1.5;
6. 9- 10 =3;    m,9- 10 =-0.5;
7. 1- 8 =9;    m,1- 8 = 1.5;
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Extracted rainflow cycles, m

Total number of cycles,   N=854

m -32 -22 -13 -3.2 6.44 16.1 25.7 35.3 45 54 64.1 73.7 83.3 92.9 103 112 122 131 141 151
298.8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
283.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
268.9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
254 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
239 0 0 0 0 0 0 0 1 2 2 0 0 0 0 0 0 0 0 0 0 5

224.1 0 0 0 0 0 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 5
209.2 0 0 0 0 0 0 0 3 4 5 2 0 0 0 0 0 0 0 0 0 14
194.2 0 0 0 0 0 1 0 1 7 2 0 0 0 0 0 0 0 0 0 0 11
179.3 0 0 0 0 0 0 1 0 4 4 0 0 0 0 0 0 0 0 0 0 9
164.3 0 0 0 0 1 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 5
149.4 0 0 0 0 0 0 1 0 0 0 0 2 1 0 0 0 0 0 0 0 4
134.5 0 0 0 0 0 0 0 0 0 0 0 4 1 1 0 0 0 0 0 0 6
119.5 0 1 1 0 0 0 0 0 0 0 3 1 5 1 2 0 0 0 0 0 14
104.6 0 0 1 2 1 0 0 0 0 2 4 3 7 3 2 1 2 1 0 0 29
89.64 0 1 2 3 7 2 0 0 0 1 2 8 10 7 5 6 2 1 0 0 57
74.7 1 1 3 4 3 5 0 1 2 2 10 18 23 20 17 11 4 1 0 0 126

59.76 2 1 5 7 4 1 4 5 1 2 11 20 34 31 31 28 9 7 1 1 205
44.82 1 6 9 7 9 7 10 3 3 8 15 37 49 64 62 41 16 11 2 1 361
29.88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14.94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

854

Mean stress,  m
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Extracted rainflow cycles, m
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b) the stress range
frequency distribution
diagram
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Day 1

The End
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