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When is Multiaxial Fatigue Important ? 

 Complex state of stress 
 Complex out of phase loading 
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Uniaxial Stress 

one principal stress 
one direction 

X 

Z 

Y 
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Proportional Biaxial 

principal stresses vary 
proportionally  
but do not rotate 

X 

Z 

Y 
σ1 = ασ2 = βσ3 
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Nonproportional Multiaxial 

Principal stresses may 
vary nonproportionally 
and/or change direction 

X 

Z 
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Shear and Normal Strains 
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3D stresses 
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Book 
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Outline 

 State of Stress  
 Stress-Strain Relationships 
 Fatigue Mechanisms 
 Multiaxial Testing 
 Stress Based Models  
 Strain Based Models 
 Fracture Mechanics Models 
 Nonproportional Loading 
 Stress Concentrations 
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State of Stress 

 Stress components 
 Common states of stress 
 Shear stresses 
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Stress Components 
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Six stresses and six strains 
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Stresses Acting on a Plane 
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Principal Stresses 

σ3 - σ2( σX + σY + σZ ) +  σ(σXσY + σYσZσXσZ  -τ2
XY - τ2

YZ -τ2
XZ ) 

     - (σXσYσZ + 2τXYτYZτXZ - σXτ2
YZ - σYτ2

ZX - σZτ2
XY ) = 0  
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Stress and Strain Distributions 
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Stresses are nearly the same over a 10° range of angles 
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Tension 
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Torsion 
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Maximum and Octahedral Shear 
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State of Stress Summary 

 Stresses acting on a plane 
 Principal stress 
Maximum shear stress 
Octahedral shear stress 
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Outline 

 State of Stress  
 Stress-Strain Relationships 
 Fatigue Mechanisms 
 Multiaxial Testing 
 Stress Based Models  
 Strain Based Models 
 Fracture Mechanics Models 
 Nonproportional Loading 
 Stress Concentrations 
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The Fatigue Process 

 Crack nucleation 
 Small crack growth in an elastic-plastic 

stress field 
Macroscopic crack growth in a nominally 

elastic stress field 
 Final fracture 
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Slip Bands 

Ma, B-T and Laird C. “Overview of fatigue behavior in copper sinle crystals –II Population, size, distribution and growth 
Kinetics of stage I cracks for tests at constant strain amplitude”, Acta Metallurgica, Vol 37, 1989, 337-348 
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crack growth direction

10 µm

slip bands shear stress 

Mode II Growth 
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1045 Steel - Tension 
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304 Stainless Steel - Tension 
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Inconel 718 - Tension 
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Outline 

 State of Stress  
 Stress-Strain Relationships 
 Fatigue Mechanisms 
 Multiaxial Testing 
 Stress Based Models  
 Strain Based Models 
 Fracture Mechanics Models 
 Nonproportional Loading 
 Stress Concentrations 
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Fatigue Mechanisms Summary 

 Fatigue cracks nucleate in shear 
 Fatigue cracks grow in either shear or tension 

depending on material and state of stress 
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Stress Based Models 

 Sines 
 Findley 
 Dang Van 
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Test Results 

 Cyclic tension with static tension 
 Cyclic torsion with static torsion 
 Cyclic tension with static torsion 
 Cyclic torsion with static tension 
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Conclusions 

 Tension mean stress affects both tension 
and torsion 

 Torsion mean stress does not affect tension 
or torsion 
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Findley 
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Bending Torsion Correlation 
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Dang Van 

τ σ( ) ( )t a t bh+ =
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V(M) 

Σ ij (M,t)   E ij (M,t) 

σ ij (m,t) 
ε ij (m,t) 
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Isotropic Hardening 
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Stress Based Models Summary 
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Model Comparison R = -1 
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Outline 

 State of Stress  
 Stress-Strain Relationships 
 Fatigue Mechanisms 
 Multiaxial Testing 
 Stress Based Models  
 Strain Based Models 
 Fracture Mechanics Models 
 Nonproportional Loading 
 Stress Concentrations 
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Strain Based Models 

 Plastic Work 
 Brown and Miller 
 Fatemi and Socie 
 Smith Watson and Topper 
 Liu 
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Case A and B 

Growth along the surface Growth into the surface 
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Uniaxial

Equibiaxial

Brown and Miller ( continued ) 
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Brown and Miller ( continued ) 
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Fatemi and Socie 
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Fatemi and Socie 
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Smith Watson Topper 
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Liu 

 ∆WI = (∆σn ∆εn)max + (∆τ ∆γ) 
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Virtual strain energy for both mode I and mode II cracking 
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Cyclic Torsion 

Cyclic Shear Strain Cyclic Tensile Strain 

Shear Damage Tensile Damage 

Cyclic Torsion 
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Cyclic Torsion 
Static Tension 

Cyclic Shear Strain Cyclic Tensile Strain 

Shear Damage Tensile Damage 

Cyclic Torsion with Static Tension 
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Cyclic Shear Strain Cyclic Tensile Strain 

Tensile Damage Shear Damage Cyclic Torsion 
Static Compression 

Cyclic Torsion with Compression 
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Cyclic Torsion 
Static Compression 

Hoop Tension 

Cyclic Shear Strain Cyclic Tensile Strain 

Tensile Damage Shear Damage 

Cyclic Torsion with Tension  
   and Compression 
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Test Results 

 
Load Case ∆γ/2 σhoop MPa σaxial MPa Nf 

Torsion 0.0054 0 0 45,200 
with tension 0.0054 0 450 10,300 

with compression 0.0054 0 -500 50,000 
with tension and 

compression 
0.0054 450 -500 11,200 
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Conclusions 

 All critical plane models correctly predict 
these results 

 Hydrostatic stress models can not predict 
these results 
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Model Comparison 
                                           Summary of calculated fatigue lives 

 
Model Equation Life 
Epsilon 6.5 14,060 
Garud    6.7 5,210 
Ellyin 6.17 4,450 

Brown-Miller 6.22 3,980 
SWT 6.24 9,930 
Liu I 6.41 4,280 
Liu II 6.42 5,420 
Chu 6.37 3,040 

Gamma  26,775 
Fatemi-Socie 6.23 10,350 

Glinka 6.39 33,220 
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Strain Based Models Summary 

 Two separate models are needed, one for 
tensile growth and one for shear growth 

 Cyclic plasticity governs stress and strain 
ranges 

Mean stress effects are a result of crack 
closure on the critical plane 
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Separate Tensile and Shear Models 
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Cyclic Plasticity 
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Outline 

 State of Stress  
 Stress-Strain Relationships 
 Fatigue Mechanisms 
 Multiaxial Testing 
 Stress Based Models  
 Strain Based Models 
 Fracture Mechanics Models 
 Nonproportional Loading 
 Stress Concentrations 
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Nonproportional Loading 

 In and Out-of-phase loading 
 Nonproportional cyclic hardening 
 Variable amplitude 
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Findley Model Results 
  

  ∆τ/2  MPa   σ 
n,max  MPa   ∆τ/2 + 0.3 σ 

n,max   N/N ip   

in - phase   353   250   428   1.0   
90 °  out - of - phase   250   500   400   2.0   
diamond   250   500   400   2.0   
square   353   603   534   0.11   
cross  -  tension cycle   250   250   325   16   
cross  -  torsion cycle   250   0   250   216   

  

ε x 

γ xy /2 cross 

ε x 

γ xy /2 diamond out-of-phase 

ε x 

γ xy /2 square 

in-phase 

ε x 

γ xy /2 
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Nonproportional Hardening 
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Stress-Strain Response (continued) 
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Nonproportional hardening results in lower fatigue lives 

All tests have the same strain ranges 
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Case A Case B Case C Case D 
σ x σ x σ x σ x 

σ y σ y σ y σ y 

Nonproportional Example 
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Case A Case B Case C Case D

τxy τxy τxy τxy

Shear Stresses 
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Stress-Strain on 120° and 150° Planes 
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Fatigue Calculations 

Load or strain history 

Cyclic plasticity model 

Stress and strain tensor 

Search for critical plane 
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 Analysis model   
Single event 
16 input channels 
2240 elements 

 

An Example 

From Khosrovaneh, Pattu and Schnaidt “Discussion of Fatigue Analysis Techniques for Automotive Applications” 
Presented at SAE 2004.  
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Biaxial and Uniaxial Solution 
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Nonproportional Loading Summary 

 Nonproportional cyclic hardening increases 
stress levels 

 Critical plane models are used to assess 
fatigue damage 
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Outline 

 State of Stress  
 Stress-Strain Relationships 
 Fatigue Mechanisms 
 Multiaxial Testing 
 Stress Based Models  
 Strain Based Models 
 Fracture Mechanics Models 
 Nonproportional Loading 
 Stress Concentrations 
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Notches 

 Stress and strain concentrations 
 Nonproportional loading and stressing 
 Fatigue notch factors 
 Cracks at notches 
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Stress concentration factor depends on type of loading 
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Torsion Experiments 
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Multiaxial Loading 

 Uniaxial loading that produces multiaxial 
stresses at notches 

Multiaxial loading that produces uniaxial 
stresses at notches 

Multiaxial loading that produces multiaxial 
stresses at notches 
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Multiaxial Loading 

 Uniaxial loading that produces multiaxial 
stresses at notches 

Multiaxial loading that produces uniaxial 
stresses at notches 

Multiaxial loading that produces multiaxial 
stresses at notches 
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Applied Bending Moments 
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Bending Moments 

  ∆ M   A   B   C   D   
2.82     1     1   
2.00   3     2     
1.41     2     1   
1.00       2     
0.71         2   

  ∆ ∆M M= ∑ 55

  A   B   C   D   
∆ M   2.49   2.85   2.31   2.84   
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Combined Loading 
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1.72σ 

σ2 = −0.72σ 
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τ = σ 
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τ = σ 
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Maximum Tensile Stress Location 
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Kt = 3 Kt = 4

In and Out of Phase Loading 

In-phase Out-of-phase 

Damage location changes with load phasing 
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Multiaxial Loading 

 Uniaxial loading that produces multiaxial 
stresses at notches 

Multiaxial loading that produces uniaxial 
stresses at notches 

Multiaxial loading that produces multiaxial 
stresses at notches 
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Fracture Surfaces in Torsion 

Circumferencial Notch 

Shoulder Fillet 
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Neuber’s Rule 
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Multiaxial Neuber’s Rule 

ε∆σ∆=∆ ES2e

Define Neuber’s rule in equivalent variables 
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Ignore Plasticity Theory 
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Hoffman and Seeger 
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Koettgen-Barkey-Socie 
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Notches Summary 

 Uniaxial loading can produce multiaxial 
stresses at notches 

Multiaxial loading can produce uniaxial 
stresses at notches 

Multiaxial stresses are not very important in 
thin plate and shell structures 

Multiaxial stresses are not very important in 
crack growth 
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