Fatigue and Fracture

Multiaxial Fatigue

Professor Darrell F. Socie Mechanical Science and Engineering University of Illinois

© 2004-2013 Darrell Socie, All Rights Reserved

When is Multiaxial Fatigue Important?

Complex state of stressComplex out of phase loading

one principal stress one direction

Proportional Biaxial

principal stresses vary proportionally but do not rotate

$$\sigma_1 = \alpha \sigma_2 = \beta \sigma_3$$

Nonproportional Multiaxial

Principal stresses may vary nonproportionally and/or change direction

Shear and Normal Strains

Shear and Normal Strains

Multiaxial Fatigue

Outline

State of Stress

- Stress-Strain Relationships
- Fatigue Mechanisms
- Multiaxial Testing
- Stress Based Models
- Strain Based Models
- Fracture Mechanics Models
- Nonproportional Loading
- Stress Concentrations

- Stress components
- Common states of stress
- Shear stresses

Stresses Acting on a Plane

 $\sigma^{3} - \sigma^{2}(\sigma_{X} + \sigma_{Y} + \sigma_{Z}) + \sigma(\sigma_{X}\sigma_{Y} + \sigma_{Y}\sigma_{Z}\sigma_{X}\sigma_{Z} - \tau^{2}_{XY} - \tau^{2}_{YZ} - \tau^{2}_{XZ})$ $- (\sigma_{X}\sigma_{Y}\sigma_{Z} + 2\tau_{XY}\tau_{YZ}\tau_{XZ} - \sigma_{X}\tau^{2}_{YZ} - \sigma_{Y}\tau^{2}_{ZX} - \sigma_{Z}\tau^{2}_{XY}) = 0$

Stress and Strain Distributions

Stresses are nearly the same over a 10° range of angles

Maximum shear stress

Octahedral shear stress

Maximum and Octahedral Shear

State of Stress Summary

- Stresses acting on a plane
- Principal stress
- Maximum shear stress
- Octahedral shear stress

Outline

- State of Stress
- Stress-Strain Relationships
- Fatigue Mechanisms
- Multiaxial Testing
- Stress Based Models
- Strain Based Models
- Fracture Mechanics Models
- Nonproportional Loading
- Stress Concentrations

The Fatigue Process

- Crack nucleation
- Small crack growth in an elastic-plastic stress field
- Macroscopic crack growth in a nominally elastic stress field
- Final fracture

Ma, B-T and Laird C. "Overview of fatigue behavior in copper sinle crystals –II Population, size, distribution and growth Kinetics of stage I cracks for tests at constant strain amplitude", Acta Metallurgica, Vol 37, 1989, 337-348

Multiaxial Fatigue

© 2003-2013 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Mode I Growth

— crack growth direction

1045 Steel - Torsion

304 Stainless Steel - Tension 1.0 Tension 0.8 0.6 **Nucleation**

Outline

- State of Stress
- Stress-Strain Relationships
- Fatigue Mechanisms
- Multiaxial Testing
- Stress Based Models
- Strain Based Models
- Fracture Mechanics Models
- Nonproportional Loading
- Stress Concentrations

Fatigue Mechanisms Summary

- Fatigue cracks nucleate in shear
- Fatigue cracks grow in either shear or tension depending on material and state of stress

SinesFindleyDang Van
Bending Torsion Correlation

- Cyclic tension with static tension
- Cyclic torsion with static torsion
- Cyclic tension with static torsion
- Cyclic torsion with static tension

Cyclic Tension with Static Tension

Cyclic Torsion with Static Torsion

Multiaxial Fatigue

© 2003-2013 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Cyclic Torsion with Static Tension

Tension mean stress affects both tension and torsion

Torsion mean stress does not affect tension or torsion

$$\frac{\Delta \tau_{oct}}{2} + \alpha (3\sigma_{h}) = \beta$$

$$\frac{1}{6}\sqrt{(\Delta\sigma_{x}-\Delta\sigma_{y})^{2}+(\Delta\sigma_{x}-\Delta\sigma_{z})^{2}+(\Delta\sigma_{y}-\Delta\sigma_{z})^{2}+6(\Delta\tau_{xy}^{2}+\Delta\tau_{xz}^{2}+\Delta\tau_{yz}^{2})} + \alpha(\sigma_{x}^{\text{mean}}+\sigma_{y}^{\text{mean}}+\sigma_{z}^{\text{mean}}) = \beta$$

Bending Torsion Correlation

 $\tau(t) + a\sigma_{h}(t) = b$

 $\Sigma_{ij}(M,t) = E_{ij}(M,t)$

Failure occurs when the stress range is not elastic

Multiaxial Kinematic and Isotropic

ρ^* stabilized residual stress

Dang Van (continued)

Stress Based Models Summary

Sines:
$$\frac{\Delta \tau_{oct}}{2} + \alpha (3\sigma_h) = \beta$$

Findley: $\left(\frac{\Delta \tau}{2} + k\sigma_n\right)_{max} = f$

Dang Van: $\tau(t) + a\sigma_h(t) = b$

Model Comparison R = -1

Outline

- State of Stress
- Stress-Strain Relationships
- Fatigue Mechanisms
- Multiaxial Testing
- Stress Based Models
- Strain Based Models
- Fracture Mechanics Models
- Nonproportional Loading
- Stress Concentrations

Strain Based Models

- Plastic Work
- Brown and Miller
- Fatemi and Socie
- Smith Watson and Topper
- Liu

Octahedral Shear Strain

Brown and Miller

Growth along the surface

Growth into the surface

Brown and Miller (continued)

Brown and Miller (continued)

$$\Delta \hat{\gamma} = \left(\Delta \gamma_{\max}^{\alpha} + S \Delta \varepsilon_{n}^{\alpha} \right)^{\frac{1}{\alpha}}$$

Crack Length Observations

$$\frac{\Delta \gamma}{2} \left(1 + k \frac{\sigma_{n,max}}{\sigma_y} \right) = \frac{\tau_f'}{G} (2N_f)^{bo} + \gamma_f' (2N_f)^{co}$$

$$\sigma_{n} \frac{\Delta \varepsilon_{1}}{2} = \frac{\sigma_{f}^{2}}{E} (2N_{f})^{2b} + \sigma_{f}^{2} \varepsilon_{f}^{2} (2N_{f})^{b+c}$$

Multiaxial Fatigue

Virtual strain energy for both mode I and mode II cracking

$$\Delta W_{I} = (\Delta \sigma_{n} \Delta \varepsilon_{n})_{max} + (\Delta \tau \Delta \gamma)$$

$$\Delta W_{I} = 4\sigma_{f}^{'} \varepsilon_{f}^{'} (2N_{f})^{b+c} + \frac{4\sigma_{f}^{'^{2}}}{E} (2N_{f})^{2b}$$

$$\Delta W_{II} = (\Delta \sigma_{n} \Delta \varepsilon_{n}) + (\Delta \tau \Delta \gamma)_{max}$$

$$\Delta W_{II} = 4\tau_{f}^{'} \gamma_{f}^{'} (2N_{f})^{bo+co} + \frac{4\tau_{f}^{'^{2}}}{G} (2N_{f})^{2bo}$$

Liu

Cyclic Torsion with Static Tension

Cyclic Torsion with Compression

Cyclic Torsion with Tension and Compression

Load Case	$\Delta \gamma/2$	σ_{hoop} MPa	σ_{axial} MPa	N _f
Torsion	0.0054	0	0	45,200
with tension	0.0054	0	450	10,300
with compression	0.0054	0	-500	50,000
with tension and	0.0054	450	-500	11,200
compression				

- All critical plane models correctly predict these results
- Hydrostatic stress models can not predict these results

Model Comparison

Summary of calculated fatigue lives

Model	Equation	Life
Epsilon	6.5	14,060
Garud	6.7	5,210
Ellyin	6.17	4,450
Brown-Miller	6.22	3,980
SWT	6.24	9,930
Liu I	6.41	4,280
Liu II	6.42	5,420
Chu	6.37	3,040
Gamma		26,775
Fatemi-Socie	6.23	10,350
Glinka	6.39	33,220

Strain Based Models Summary

- Two separate models are needed, one for tensile growth and one for shear growth
- Cyclic plasticity governs stress and strain ranges
- Mean stress effects are a result of crack closure on the critical plane

Separate Tensile and Shear Models

 $\Delta \epsilon$ $\Delta \gamma$ $\Delta\epsilon^{\text{p}}$ $\Delta \gamma^{\mathsf{p}}$ ΔεΔσ $\Delta\gamma\Delta\tau$ $\Delta \epsilon^{p} \Delta \sigma$ $\Delta \gamma^p \Delta \tau$

Multiaxial Fatigue

$$\begin{split} \Delta \varepsilon_{eq} &= \frac{\sigma_{f}^{'} - \sigma_{mean}}{E} (2N_{f})^{b} + \varepsilon_{f}^{'} (2N_{f})^{c} \\ \frac{\Delta \gamma_{max}}{2} + S\Delta \varepsilon_{n} = (1.3 + 0.7S) \frac{\sigma_{f}^{'} - 2\sigma_{n}}{E} (2N_{f})^{b} + (1.5 + 0.5S) \varepsilon_{f}^{'} (2N_{f})^{c} \\ \frac{\Delta \gamma}{2} \left(1 + k \frac{\sigma_{n,max}}{\sigma_{y}} \right) &= \frac{\tau_{f}^{'}}{G} (2N_{f})^{bo} + \gamma_{f}^{'} (2N_{f})^{co} \\ \sigma_{n} \frac{\Delta \varepsilon_{1}}{2} &= \frac{\sigma_{f}^{'2}}{E} (2N_{f})^{2b} + \sigma_{f}^{'} \varepsilon_{f}^{'} (2N_{f})^{b+c} \\ \Delta W_{I} &= \left[(\Delta \sigma_{n} \Delta \varepsilon_{n})_{max} + (\Delta \tau \Delta \gamma) \right] \left(\frac{2}{1-R} \right) \end{split}$$

Outline

- State of Stress
- Stress-Strain Relationships
- Fatigue Mechanisms
- Multiaxial Testing
- Stress Based Models
- Strain Based Models
- Fracture Mechanics Models
- Nonproportional Loading
- Stress Concentrations

Nonproportional Loading

In and Out-of-phase loading
Nonproportional cyclic hardening
Variable amplitude

In and Out-of-Phase Loading

In-Phase and Out-of-Phase

Multiaxial Fatigue

© 2003-2013 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Loading Histories in-phase out-of-phase diamond square cross

Findley Model Results

	$\Delta \tau / 2 \text{ MPa}$	σ MPa	$\Delta \tau/2 + 0.3 \sigma_{n,max}$	N/N _{ip}
in-phase	353	250	428	1.0
90° out-of-phase	250	500	400	2.0
diamond	250	500	400	2.0
square	353	603	534	0.11
cross - tension cycle	250	250	325	16
cross - torsion cycle	250	0	250	216

Nonproportional Hardening

Critical Plane

Loading Histories

Stress-Strain Response

Stress-Strain Response (continued)

Maximum Stress

Nonproportional hardening results in lower fatigue lives

Nonproportional Example

Simple Variable Amplitude History

Stress-Strain on 30° and 60° Planes

Stress-Strain on 120° and 150° Planes

Shear Strain History on Critical Plane

An Example

Analysis model Single event 16 input channels 2240 elements

From Khosrovaneh, Pattu and Schnaidt "Discussion of Fatigue Analysis Techniques for Automotive Applications" Presented at SAE 2004.

Multiaxial Fatigue

Biaxial and Uniaxial Solution

Nonproportional Loading Summary

- Nonproportional cyclic hardening increases stress levels
- Critical plane models are used to assess fatigue damage

Outline

- State of Stress
- Stress-Strain Relationships
- Fatigue Mechanisms
- Multiaxial Testing
- Stress Based Models
- Strain Based Models
- Fracture Mechanics Models
- Nonproportional Loading
- Stress Concentrations

- Stress and strain concentrations
- Nonproportional loading and stressing
- Fatigue notch factors
- Cracks at notches

Stress Concentration Factors

Stresses at the Hole

Stress concentration factor depends on type of loading

Shear Stresses during Torsion

Torsion Experiments

- Uniaxial loading that produces multiaxial stresses at notches
- Multiaxial loading that produces uniaxial stresses at notches
- Multiaxial loading that produces multiaxial stresses at notches

Thickness Effects

- Uniaxial loading that produces multiaxial stresses at notches
- Multiaxial loading that produces uniaxial stresses at notches
- Multiaxial loading that produces multiaxial stresses at notches

Applied Bending Moments

Bending Moments on the Shaft

Bending Moments

Maximum Tensile Stress Location

In and Out of Phase Loading

Damage location changes with load phasing

- Uniaxial loading that produces multiaxial stresses at notches
- Multiaxial loading that produces uniaxial stresses at notches
- Multiaxial loading that produces multiaxial stresses at notches

Torsion Loading

Out-of-phase shear loading is needed to produce nonproportional stressing

Fatigue Notch Factors

Fatigue Notch Factors (continued)

Peterson's Equation

$$K_{f} = 1 + \frac{K_{T} - 1}{1 + \frac{a}{r}}$$

Fracture Surfaces in Torsion

Circumferencial Notch

Shoulder Fillet

Stress calculated with elastic assumptions

 ${}^{e}S {}^{e}e = \sigma \epsilon$

For cyclic loading

 $\Delta^{e}S^{2} = E\Delta\sigma\Delta\epsilon$

Multiaxial Neuber's Rule

Define Neuber's rule in equivalent variables

$$\Delta^{\mathsf{e}}\overline{\mathsf{S}}^{\mathsf{2}} = \mathsf{E}\Delta\overline{\sigma}\Delta\overline{\varepsilon}$$

Stress strain curve

$$\Delta \overline{\epsilon} = \frac{\Delta \overline{\sigma}}{\mathsf{E}} + \left(\frac{\Delta \overline{\sigma}}{\mathsf{K}'}\right)^{\frac{1}{\mathsf{n}'}}$$

Constitutive equation

$$\begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} f(E,K',n') \\ r_{xy} \end{bmatrix} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{bmatrix}$$

Five equations and six unknowns

Multiaxial Fatigue

Ignore Plasticity Theory

$$\varepsilon_{2} = \frac{{}^{e} \mathbf{e}_{2}}{{}^{e} \mathbf{e}_{1}} \varepsilon_{1}$$
$$\varepsilon_{3} = \frac{{}^{e} \mathbf{e}_{3}}{{}^{e} \mathbf{e}_{1}} \varepsilon_{1}$$
$$\sigma_{2} = \frac{{}^{e} \mathbf{S}_{2}}{{}^{e} \mathbf{S}_{1}} \sigma_{1}$$

$$\sigma_3 = \frac{{}^{e}S_3}{{}^{e}S_1}\sigma_1$$

$$\frac{\sigma_2}{\sigma_1} = \frac{{}^{e}S_2}{{}^{e}S_1}$$
$$\frac{\varepsilon_2}{\varepsilon_1} = \frac{{}^{e}e_2}{{}^{e}e_1}$$

Strain energy density

$$\frac{\Delta \sigma_{ij} \Delta \epsilon_{ij}}{\sum \Delta \sigma_{ij} \Delta \epsilon_{ij}} = \frac{\Delta^{e} S_{ij} \Delta^{e} e_{ij}}{\sum \Delta^{e} S_{ij} \Delta^{e} e_{ij}}$$

Strain

Koettgen-Barkey-Socie

Stress Intensity Factors

Crack Growth From a Hole

Notches Summary

- Uniaxial loading can produce multiaxial stresses at notches
- Multiaxial loading can produce uniaxial stresses at notches
- Multiaxial stresses are not very important in thin plate and shell structures
- Multiaxial stresses are not very important in crack growth

Multiaxial Fatigue