Multiaxial Fatigue

Professor Darrell Socie

© 2008-2014 Darrell Socie, All Rights Reserved

Stresses around holes
Crack Nucleation
Crack Growth

Multiaxial Fatigue

Multiaxial Fatigue Problems

- Uniaxial loading that produces multi stressesund stress concentrators
- Multiaxial loading that produces uniaxial stresses around stress concentrators
- Multiaxial loading that produces multiaxial stresses around stress concentrators
- Multiaxial loading that causes mixed mode long crack growth

t	ε _x	ε _z	σ_{x}	σ _z
7	0.01	-0.005	63.5	0
15	0.01	-0.003	70.6	14.1
30	0.01	-0.002	73.0	21.8
50	0.01	-0.001	75.1	29.3

Multiaxial Fatigue Problems

- Uniaxial loading that produces multi stressesund stress concentrators
- Multiaxial loading that produces uniaxial stresses around stress concentrators
- Multiaxial loading that produces multiaxial stresses around stress concentrators
- Multiaxial loading that causes mixed mode long crack growth

Stresses at the Hole

Stress concentration factor depends on type of loading

Maximum Tensile Stress Location

In and Out of Phase Loading

Damage location changes with load phasing

Multiaxial Fatigue Problems

- Uniaxial loading that produces multiaxial stresses around stress concentrators
- Multiaxial loading that produces uniaxial stresses around stress concentrators
- Multiaxial loading that produces multiaxial stresses around stress concentrators
- Multiaxial loading that causes mixed mode long crack growth

Out-of-phase shear loading is needed to produce nonproportional stressing

Multiaxial Fatigue Problems

- Uniaxial loading that produces multiaxial stresses around stress concentrators
- Multiaxial loading that produces uniaxial stresses around stress concentrators
- Multiaxial loading that produces multiaxial stresses around stress concentrators
- Multiaxial loading that causes mixed mode long crack growth

Shear Stresses Around Hole $\theta = 0$

Torsion Experiments

Shear Stresses Around Hole r = 1.33

Stress Intensity Factors

Crack nucleates in shear

Mixed mode growth?

Tensile mode growth?

Cracks nucleate in a uniaxial stress field and then grow in a mixed tensile/shear stress field

Stresses around holes
 Crack Nucleation

 Stress Based Models
 Strain Based Models

 Crack Growth

Fatigue Mechanisms Summary

- Fatigue cracks nucleate in shear
- Fatigue cracks grow in either shear or tension depending on material and state of stress

SinesFindleyDang Van

Bending Torsion Correlation

- Cyclic tension with static tension
- Cyclic torsion with static torsion
- Cyclic tension with static torsion
- Cyclic torsion with static tension

Cyclic Tension with Static Tension

Cyclic Torsion with Static Torsion

^{© 2008-2014} Darrell Socie, All Rights Reserved

Cyclic Torsion with Static Tension

Tension mean stress affects both tension and torsion

Torsion mean stress does not affect tension or torsion

$$\frac{\Delta \tau_{oct}}{2} + \alpha (3\sigma_{h}) = \beta$$

$$\frac{1}{6}\sqrt{\left(\Delta\sigma_{x}-\Delta\sigma_{y}\right)^{2}+\left(\Delta\sigma_{x}-\Delta\sigma_{z}\right)^{2}+\left(\Delta\sigma_{y}-\Delta\sigma_{z}\right)^{2}+6\left(\Delta\tau_{xy}^{2}+\Delta\tau_{xz}^{2}+\Delta\tau_{yz}^{2}\right)}+\alpha\left(\sigma_{x}^{\text{mean}}+\sigma_{y}^{\text{mean}}+\sigma_{z}^{\text{mean}}\right)=\beta$$

Bending Torsion Correlation

 $\tau(t) + a\sigma_{h}(t) = b$

 $\Sigma_{ij}(M,t) = \mathsf{E}_{ij}(M,t)$

Failure occurs when the stress range is not elastic
Multiaxial Kinematic and Isotropic

ρ^* stabilized residual stress

Stress Based Models Summary

Sines:
$$\frac{\Delta \tau_{oct}}{2} + \alpha (3\sigma_h) = \beta$$

Findley: $\left(\frac{\Delta \tau}{2} + k\sigma_n\right)_{max} = f$

Dang Van: $\tau(t) + a\sigma_h(t) = b$

Model Comparison R = -1

Stresses around holes
 Crack Nucleation

 Stress Based Models
 Strain Based Models

 Crack Growth

- Brown and Miller
- Fatemi and Socie
- Smith Watson and Topper

Brown and Miller

Case A

Case B

Growth along the surface

Growth into the surface

Brown and Miller (continued)

Brown and Miller (continued)

$$\Delta \hat{\gamma} = \left(\Delta \gamma_{\max}^{\alpha} + S \Delta \varepsilon_{n}^{\alpha} \right)^{\frac{1}{\alpha}}$$

 $\Delta \hat{\gamma} = \left(\Delta \gamma_{\max}^{\alpha} + S \Delta \varepsilon_{n}^{\alpha} \right)^{\frac{1}{\alpha}}$

Brown and Miller -Cracks should be equally likely on two planes 90° apart

Crack Directions

Fatigue damage is planar in nature The material finds a critical plane for microcrack growth.

Stresses on the Planes

Crack Length Observations

$$\frac{\Delta \gamma}{2} \left(1 + k \frac{\sigma_{n,max}}{\sigma_y} \right) = \frac{\tau_f'}{G} (2N_f)^{bo} + \gamma_f' (2N_f)^{co}$$

Torsion Tests

304 Stainless Steel

$$\sigma_{n} \frac{\Delta \varepsilon_{1}}{2} = \frac{\sigma_{f}^{2}}{E} (2N_{f})^{2b} + \sigma_{f}^{2} \varepsilon_{f}^{2} (2N_{f})^{b+c}$$

Loading Histories

Stress-Strain Response

Maximum Stress

Nonproportional hardening results in lower fatigue lives

Cracks nucleate in shear and then grow in either shear or tension depending on the material and state of stress

Separate Tensile and Shear Models

Normal stresses open and close microcracks

---- crack growth direction

(From Murakami)

Cyclic Torsion with Static Tension

Cyclic Torsion with Compression

Cyclic Torsion with Tension and Compression

Load Case	$\Delta \gamma/2$	$\sigma_{ m hoop}$ MPa	σ_{axial} MPa	N_{f}
Torsion	0.0054	0	0	45,200
with tension	0.0054	0	450	10,300
with compression	0.0054	0	-500	50,000
with tension and	0.0054	450	-500	11,200
compression				

- All critical plane models correctly predict these results
- Hydrostatic stress models can not predict these results

Model Comparison

Summary of calculated fatigue lives

Model	Equation	Life
Epsilon	6.5	14,060
Garud	6.7	5,210
Ellyin	6.17	4,450
Brown-Miller	6.22	3,980
SWT	6.24	9,930
Liu I	6.41	4,280
Liu II	6.42	5,420
Chu	6.37	3,040
Gamma		26,775
Fatemi-Socie	6.23	10,350
Glinka	6.39	33,220

Stresses around holes
Crack Nucleation
Crack Growth

Mode I and Mode III Growth

Mode I and Mode II Growth

Fracture Surfaces

Bending

Mode III Growth

Fracture Mechanics Models

$$\begin{aligned} \frac{da}{dN} &= C \left(\Delta K_{eq} \right)^{m} \\ \Delta K_{eq} &= \left[\Delta K_{I}^{4} + 8\Delta K_{II}^{4} + 8\Delta K_{III}^{4} / (1 - \nu) \right]^{0.25} \\ \Delta K_{eq} &= \left[\Delta K_{I}^{2} + \Delta K_{II}^{2} + (1 + \nu) \Delta K_{III}^{2} \right]^{0.5} \\ \Delta K_{eq} &= \left[\Delta K_{I}^{2} + \Delta K_{I} \Delta K_{II} + \Delta K_{II}^{2} \right]^{0.5} \\ \Delta K_{eq} (\epsilon) &= \left[\left(F_{II} \frac{E}{2(1 + \nu)} \Delta \gamma \right)^{2} + \left(F_{I} E \Delta \epsilon \right)^{2} \right]^{0.5} \sqrt{\pi a} \\ \Delta K_{eq} (\epsilon) &= FG \Delta \gamma \left(1 + k \frac{\sigma_{n,max}}{\sigma_{ys}} \right) \sqrt{\pi a} \end{aligned}$$

Growth of Inclined Cracks

Cracks grow in either tension or shear

From: Otsuka et.al. Engineering Fracture Mechanics, Vol 7, 1975

Multiaxial Fatigue

Tensile growth:

$$K\sigma = \cos\frac{\theta}{2} \left[K_{\parallel} \cos^{2}\frac{\theta}{2} - \frac{3}{2} K_{\parallel} \sin\theta \right]$$

Shear growth:

$$K\tau = \frac{1}{2}\cos\frac{\theta}{2}\left[K_{\parallel}\sin\frac{\theta}{2} + K_{\parallel}(3\cos\theta - 1)\right]$$

Strain Energy Density

Strain energy density at the crack tip:

$$S = a_{11}K_1^2 + 2a_{12}K_1K_1 + a_{22}K_1^2 + a_{33}K_{111}^2$$

Necessary and sufficient conditions for crack growth:

$$\frac{\partial S}{\partial \theta} = 0 \text{ at } \theta = \theta_0$$
$$\frac{\partial^2 S}{\partial \theta^2} > 0 \text{ at } \theta = \theta_0$$

Cyclic strain energy density:

$$\Delta S = 2 \left[a_{11}(\theta_o) K_I^{\text{mean}} \Delta K_I + a_{12}(\theta_o) (K_{II}^{\text{mean}} \Delta K_I + K_I^{\text{mean}} \Delta K_{II}) \right. \\ \left. + a_{22}(\theta_o) K_{II}^{\text{mean}} \Delta K_{II} + a_{33}(\theta_o) K_{III}^{\text{mean}} \Delta K_{III} \right]$$

Sih, G.C and Barthelemy, B.M. "Mixed Mode Fatigue Crack Growth Predictions" Engineering Fracture Mechanics, Vol. 13, 1980

Many models but no experimental verification for out-of-phase spectrum loads

Multiaxial Fatigue