Fatigue and Fracture

Static Strength and Fracture Stress Concentration Factors

Professor Darrell F. Socie Mechanical Science and Engineering University of Illinois

© 2004-2013 Darrell Socie, All Rights Reserved

Stress Concentration Factors

- Fracture Mechanics
- Approximate Stress Intensity Factors
- Ductile vs. Brittle Fracture

"Load flow" lines

$$\frac{\sigma_{r}}{\sigma} = \frac{1+\lambda}{2} \left(1 - \left(\frac{r}{a}\right)^{2} \right) + \frac{1-\lambda}{2} \left(1 + 3\left(\frac{r}{a}\right)^{4} - 4\left(\frac{r}{a}\right)^{2} \right) \cos 2\theta$$
$$\frac{\sigma_{\theta}}{\sigma} = \frac{1+\lambda}{2} \left(1 + \left(\frac{r}{a}\right)^{2} \right) - \frac{1-\lambda}{2} \left(1 + 3\left(\frac{r}{a}\right)^{4} \right) \cos 2\theta$$
$$\frac{\tau_{r\theta}}{\sigma} = -\frac{1-\lambda}{2} \left(1 - 3\left(\frac{r}{a}\right)^{4} + 2\left(\frac{r}{a}\right)^{2} \right) \sin 2\theta$$

Independent of size, dependant only on r/a

Stress Distribution

stresses around the circumference of a hole

$$K_T = 1 + 2\sqrt{\frac{a}{\rho}} \qquad \rho = \frac{b^2}{a}$$

Sharp Notch: high K_T high gradient

Blunt Notch: low K_T low gradient

t	ε _x	ε _z	σ_{x}	σ _z
7	0.01	-0.005	63.5	0
15	0.01	-0.003	70.6	14.1
30	0.01	-0.002	73.0	21.8
50	0.01	-0.001	75.1	29.3

Fracture Surfaces

Fracture Surfaces

Stress or Strain Control?

Elastic material surrounding the plastic zone forces the displacements to be compatible, I.e. no gaps form in the structure.

Boundary conditions acting on the plastic zone boundary are displacements. Strains are the first derivative of displacement

Define K_{σ} and K_{ϵ}

Define: nominal stress, S nominal strain, e notch stress, σ notch strain, ε

Stress concentration
$$K_{\sigma} = \frac{\sigma}{S}$$

Strain concentration $K_{\varepsilon} = \frac{\varepsilon}{e}$

Nominal Stress

Notched Plate Experiments

Materials: 1018 Hot Rolled Steel 7075-T6 Aluminum

1/4 thick

1018 Stress-Strain Curve

7075-T6 Stress-Strain Curve

7075-T6 Test Data

Failure of a Notched Plate

Net section stresses must be below the flow stress

Notch strains must be below the fracture strain

Plates and shells
2D stress state
Solids
3D stress state

Stress Concentration in a Bar

Bridgeman Analysis (1943)

Elastic stress distribution

Plastic stress distribution

$$\tau = \frac{\sigma_z - \sigma_r}{2} = \text{constant}$$

$$\sigma_{z} = \sigma_{o} \left[1 + \ln \left(\frac{a^{2} + 2a\rho - r^{2}}{2a\rho} \right) \right]$$

$$P_{z} = \int_{0}^{a} 2\pi r \sigma_{z} dr$$

$$P_{max} = \pi a^2 \sigma_{flow} \left(1 + \frac{2\rho}{a} \right) ln \left(1 + \frac{a}{2\rho} \right)$$

$$P_{max} = A_{net} \sigma_{flow} CF$$

CF constraint factor

a /ρ	CF	
0	1	
1	1.21	
2	1.38	
4	1.64	
8	1.73	
20	2.63	
00	2.96	

$$P_{max} = A_{net} \sigma_{flow} CF$$

1018 Steel Test Data

7075-T6 Test Data

Net section area, state of stress and material strength control the failure load in a structure only in ductile materials. In brittle materials, cracks will form before the maximum load capacity of the structure is reached.

Static Strength and Fracture

Stress Concentration Factors

Fracture Mechanics

- Approximate Stress Intensity Factors
- Ductile vs. Brittle Fracture

1943

1972

for a crack $a \sim 10^{-3}$ $K_{T} \sim 2000$ $\rho \sim 10^{-9}$

Fracture Mechanics Parameters

- G strain energy release rate
- K stress intensity factor
- J J-integral
- R crack growth resistance

Strain Energy Release Rate

Strain Energy Release Rate, G

Strain Energy Release Rate, G

G is the energy per unit crack area needed to extend a crack

Stress Intensity Factor, K

Stress < Strength

 $\sigma < \sigma_y$

Stress Intensity < Fracture Toughness

 $K < K_{Ic}$

Two cracks with the same K will have the same behavior

operating stresses

plane stress

plane strain

What would the critical crack size be in a standard tensile test ?

$$a_{critical} = \frac{1}{\pi} \left(\frac{K_{IC}}{\sigma_f} \right)^2$$

Fracture Toughness

From M F Ashby, Materials Selection in Mechanical Design, 1999, pg 431

© 2004-2013 Darrell Socie, All Rights Reserved

Measuring Fracture Toughness

From Wilhem "Fracture Mechanics Guidelines for Aircraft Structural Applications" AFFDL-TR-69-111

Fracture Surfaces

Thickness Requirements

Size Requirements

t,W−a,a ≥2.5
$$\left(\frac{K}{\sigma_{ys}}\right)^2 \approx 50r_p$$

 σ_{ys} K_{lc} t,

	Oys		ι, ΠΠΠ
2024- T3	345	44	40.7
7075 -T6	495	25	6.4
Ti-6Al-4V	910	105	33.3
Ti-6Al-4V	1035	55	7.1
4340	860	99	33.1
4340	1510	60	3.9
17-7 PH	1435	77	7.2
52100	2070	14	0.1

mm

Strength, Toughness, Flaw Size

Collapse, Wearne, P. TV Books, NY 1999

 $\sigma_u = 100 \text{ ksi}$ $\sigma_y = 75 \text{ ksi}$

Working stress 50 ksi CVN = 2.6 ft-lb at 32° F CVN = 8.6 ft-lb at 165° F

Fracture Toughness

 $\frac{K_{IC}^2}{E} = 2(CVN)^{\frac{3}{2}} (psi-in,ft-lb)$ Barsom-Rolfe $K_{1C} = 15.5 \sqrt{CVN}$ (ft – lb) **Corten-Sailors** $K_{IC} = 9.35 \text{ CVN}^{1.65}$ (ft – lb) **Roberts-Newton** $K_{ic} = 15.9 \text{ ksi} \sqrt{\text{in}}$ Barsom-Rolfe $K_{\rm IC} = 25.0 \, \text{ksi} \sqrt{\text{in}}$ Corten-Sailors $K_{\rm IC} = 45.2 \, \text{ksi} \sqrt{\text{in}}$ **Roberts-Newton** Average 28.7

Assume a corner crack

$$K_{\rm IC} = \sigma (1.12)^2 \frac{2}{\pi} \sqrt{\pi a}$$

- Let $\sigma = \sigma_y$ a ~ 0.073 inches
- Let $\sigma = 50$ a ~ 0.163 inches

Modern Aircraft Materials

Bucci et. al., "Need for New Materials in Aging Aircraft Structures" Journa of Aircraft, Vol. 37, 2000, 122-129

Both stress and flaw size govern fracture

$$K_{lc} > \sigma \sqrt{\pi a} f\left(\frac{a}{W}\right)$$

Static Strength and Fracture

- Stress Concentration Factors
- Fracture Mechanics
- Approximate Stress Intensity Factors
- Ductile vs. Brittle Fracture

Stress Intensity Factors

- Analytical
 - Theory of elasticity
- Numerical
 - Finite element
- Experimental
 - Compliance
- Handbook
- Approximate

Stress Intensity Factors

$$\mathsf{K} = \frac{\mathsf{M}_{\mathsf{s}}\mathsf{M}_{\mathsf{t}}}{\Phi}\sigma\sqrt{\pi \mathsf{a}}$$

M_s free surface effects

M_t back surface effects

 Φ crack shape effects

$$M_{s} = 1.12$$

Edge Cracked Plate in Tension

$$F\left(\frac{a}{b}\right) = \sqrt{\frac{2b}{\pi a}} \tan \frac{\pi a}{2b} \left(\frac{0.752 + 2.02\frac{a}{b} + 0.37(1 - \sin \frac{\pi a}{2b})^3}{\cos \frac{\pi a}{2b}} \right)$$

Static Strength and Fracture

Edge Cracked Plate in Bending

$$F\left(\frac{a}{b}\right) = \sqrt{\frac{2b}{\pi a}} \tan \frac{\pi a}{2b} \left(\frac{0.923 + 0.199(1 - \sin \frac{\pi a}{2b})^4}{\cos \frac{\pi a}{2b}} \right)$$

Tension and Bending

Handbook

	9.32	An embedded elliptical crack near tree surface under tension	734	
	9.33	A semi-elliptical crack near corner under tension	742	
	9.34	A semi-elliptic surface crack emanating from the inside of an infinitely thick cylinder subjected to internal pressure	745	
	9.35	A semi-elliptical surface crack in internally pressurized cylinder (the crack faces are pressurized)	748	Annuk L'Sukuri -
Ş	9.36	Internal and external surface cracks in cylindrical vessels	751	
	9.37	Cylindrical shell containing a circumferentia or axial part-through crack	1 759	X ₃ (z)
	9.38	A pressurized cylindrical shell with a fixed end which contains an axial part-through or through crack	771	
	9.39	Corner crack in a rotating disk	786	X1(x) /

Stress Intensity Factors Handbook Y. Murakami Editor, Pergamon Press

Useful approximations

Corner crack

Two free edges Semicircular shape

$$\mathsf{K} = \sigma(1.12)^2 \frac{2}{\pi} \sqrt{\pi a}$$

Superposition

Crack tip stresses: $\sigma_{ij} = \frac{K_{\text{tension}}}{\sqrt{2\pi r}} f_{ij}(\theta) + \frac{K_{\text{bending}}}{\sqrt{2\pi r}} f_{ij}(\theta)$ $\sigma_{ij} = \frac{K_{\text{tension}} + K_{\text{bending}}}{\sqrt{2\pi r}} f_{ij}(\theta) = \frac{K_{\text{total}}}{\sqrt{2\pi r}} f_{ij}(\theta)$

$$\mathbf{K}_{\text{total}} = \mathbf{K}_{\text{tension}} + \mathbf{K}_{\text{bending}}$$

tension + bending

Once a crack reaches 10% of the hole radius, it behaves as if the hole was part of the crack

$$K_{lc} > \sigma \sqrt{\pi a} f\left(\frac{a}{W}\right)$$

$$\sigma \sim \sigma_{ys} / \frac{2}{2}$$

$$a \sim 0.1 \text{ mm} - 100 \text{ mm}$$

$$f\left(\frac{a}{W}\right) \sim 1 - 2$$

Static Strength and Fracture

- Stress Concentration Factors
- Fracture Mechanics
- Approximate Stress Intensity Factors
- Ductile vs. Brittle Fracture

Failure Analysis Diagram

$$\frac{P}{2(W-a)B} < \sigma_{flow}$$
$$S = \frac{P}{2WB} \text{ Nominal stress}$$
$$S = \sigma_{flow} \left(1 - \frac{a}{W} \right)$$

Fracture

Fracture vs. Collapse

Fracture and collapse equally likely

$$\sigma_{flow} \left(1 - \frac{a}{W} \right) = \frac{K_{lc}}{\sqrt{\pi \frac{a}{W}} \sqrt{W} f\left(\frac{a}{W}\right)}$$
$$\frac{K_{lc}}{\sigma_{flow}} = \left(1 - \frac{a}{W} \right) \sqrt{\pi \frac{a}{W}} \sqrt{W} f\left(\frac{a}{W}\right)$$

Material Properties

	σ_{ys}	K _{Ic}	K _{lc} σ _{ys}
1020	250	200	0.800
2024-T3	345	44	0.128
7075-T6	495	25	0.051
Ti-6AI-4V	910	105	0.115
Ti-6AI-4V	1035	55	0.053
4340	860	99	0.115
4340	1510	60	0.040
17-7 PH	1435	77	0.054
52100	2070	14	0.007

$$\frac{K_{lc}}{\sigma_{flow}\sqrt{W}} = \left(1 - \frac{a}{W}\right)\sqrt{\pi \frac{a}{W}}\sqrt{\frac{2W}{\pi a}} \tan \frac{\pi a}{2W}$$

Stress distribution

Strain distribution

Nominal Stress

Failure Diagram – Ductile Material ϵ_{f} is large $\varepsilon_{\rm f} = K_{\rm T}^2 \varepsilon_{\rm vs}$ fully plastic $P_{max} = \frac{A_{net} \epsilon_{f} E}{K_{\tau}^{2}}$ strength limited $P_{max} = \sigma_{flow} A_{net}$ a/w $\mathbf{0}$

Strength limit is reached before cracking at the notch

Failure Diagram – Brittle Material

Cracks form at the notch before the limit load is reached

Once a crack reaches 10% of the hole radius, it behaves as if the hole was part of the crack

What ratio of strength to toughness is needed to avoid fracture?

$$K_c = \sigma_{ys} 1.12 K_T \sqrt{\pi 0.1 r}$$

For $K_T = 3$ and r = 10 mm

$$\frac{K_c}{\sigma_{ys}}$$
>0.18

to avoid fracture from the notch

Material Properties

	σ_{ys}	K _{Ic}	K _{lc} σ _{ys}
1020	250	200	0.800
2024-T3	345	44	0.128
7075-T6	495	25	0.051
Ti-6AI-4V	910	105	0.115
Ti-6AI-4V	1035	55	0.053
4340	860	99	0.115
4340	1510	60	0.040
17-7 PH	1435	77	0.054
52100	2070	14	0.007

- Fracture is a likely failure mode for all higher strength materials
- Fracture is even more likely at stress concentrators

Fatigue and Fracture

