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Steps in fatigue life prediction procedure based on the - N approach
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b) Component

c) Section with the welded joint
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Steps in fatigue life prediction procedure based on the -N approach

Fatigue damage:
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The stepwise - N procedure for estimating fatigue life (can
be summarised as follows - see the Figure below).

• Analysis of external forces acting on the structure and the component in question (a),

• Analysis of internal loads in chosen cross section of a component (b),

• Selection of critical locations (stress concentration points) in the structure (c),

• Calculation of the elastic local stress, peak, at the critical point (usually the notch tip, d)

• Assembling of the local stress history in form of the form of peak and valley sequence (f),

• Determination of the elastic-plastic response at the critical location (h),

• Identification (extraction) of cycles represented by closed stress-strain hysteresis loops (h, i),

• Calculation of fatigue damage (k),

• Fatigue damage summation (Miner- Palmgren hypothesis, l),

• Determination of fatigue life (m) in terms of number of stress history repetitions, Nblck, (No. of
blocks) or the number of cycles to fatigue crack initiation, N.

The details concerning many other aspects of that methodology are discussed below.
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Material properties used in the strain-life
( -N) fatigue analysis of  weldments
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The effect of the weld and the base material properties on the strain-
stress and strain-life properties of welded Aluminum 5183 material

The stress-strain and strain-life data sets for the weld metal and the parent material lie
in the same scatter band! Therefore the parent material fatigue properties are used for
the analysis of fatigue life of weldments. (source: J.D Burk and F.V. Lawrence, ref. 40)
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a) Fatigue cracks in weldments initiate most often at the
weld toe or the weld root, i.e. in the Heat Affected Zone
(HAZ).

b) Fatigue material properties of the Heat Affected Zone
(HAZ) and the Weld Metal (WM) have higher mean values
of  fatigue strength parameters, than the Base Metal
properties, but they are also characterized by wider
scatter. The scatter of Base Metal properties often lies
within the scatter of the HAZ and WM scatter bands.

c) Therefore the Base Metal cyclic and fatigue properties
are most often used for fatigue analyses within the Local
Strain ( -N) method.
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Stress parameters used in the strain-life
( -N) fatigue analysis of  weldments
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Weldments, like most engineering components,
contain stress concentration regions located
around weld toes and weld roots. The high local
stresses in those locations control the fatigue
process of welded components. Therefore the
stress peak at the weld root or toe must be
determined or accounted for within the
procedure aimed at the evaluation of fatigue lives
of weldments.
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Various stress distributions in a T-butt weldment with transverse fillet welds;

• Normal stress distribution in the weld throat plane (A),
• Through the thickness normal stress distribution in the weld toe plane (B),
• Through the thickness normal stress distribution away from the weld (C),
• Normal stress distribution along the surface of the plate (D),
• Normal stress distribution along the surface of the weld (E),
• Linearized normal stress distribution in the weld toe plane (F).

Stress concentration & stress distributions in weldments
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The IIW reference 1-mm toe and root radius
concept

= 1 mm

The root and toe regions  in welded joints
are modelled as a notch with the tip radius

of = 1 mm!
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Typical FE mesh for the notch stress
analysis around the weld root region
(elements with quadratic shape function)

Typical FE mesh for the notch stress
analysis around the weld toe region
(elements with quadratic shape function)

Recommended FE mesh models for the stress analysis
around weld toes and roots having the effective

= 1mm tip radii

Recommended element size
in the tip region s < /4 !

s

s
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18

The recommended IIW fatigue S-N curve associated with
the effective =1 mm weld toe and root radius

FAT 225



The Universal GY2 stress analysis method
appropriate for any contemporary fatigue

analysis method of weldments

-Nominal stress, S-N
-Local elastic-plastic strain and stress, -N

-Fracture mechanics, da/dN- K
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• Multiaxial state of
stress at weld toe

• One shear and two
normal stresses

• Due to stress
concentration, xx is
the largest component
– Predominantly responsible

for fatigue damage
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The stress state at the weld toe
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Various stress distributions in a T-butt weldment with transverse fillet welds; A) remote (nominal)
through thickness stress, B) the actual through-thickness stress distribution in the weld toe cross
section, C) linearized through-thickness stress distribution in the weld toe cross section, D) the
actual stress distribution in the plate surface, E) extrapolated (linearly) stress distribution in the
plate surface
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Experimental Shell  elements

Fine 3-D FE mesh

Coarse 3-D FE mesh

Stress  magnitudes and distributions obtained from
various FE models:

What stress is the right one for fatigue analyses?
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Wrong Finite Element Modeling
and wrong resulting stress data!

FEM  peak

Strain gauge nom

What stress for fatigue
life estimations?
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The meaning of the nominal (reference) stress and the
stress concentration factor
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Non-uniqueness of the stress concentration factor Kt,n based on the
nominal (hot spot) stress as the reference
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a) A body with an angular notch subjected to multiple loading modes and resulting
through-the-thickness stress distribution, b) decomposition of the nominal (linear) stress
distribution in the notch cross section into the membrane and bending contribution
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Universal stress concentration factor Km
t.hs and Kb

t.hs
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m m
t hs hp

b b
t hs he sak sK K ,,

a) T-butt weldment and resulting through-the-thickness stress distribution, b) decomposition
of the nominal (linear) stress distribution in the weld toe plate cross section, c) the hot spot
stress as a sum of the hot spot membrane and bending stress, d) the actual peak stress as a
sum of the stress concentration on the hot spot membrane and bending stress
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The “hot spot” and the weld toe peak stresses

The advantage of using expression

lies in the fact that the membrane stress hs
m and the bending stress

hs
b can be determined by simple decomposition of the linearized

through-thickness stress field, (x=0,y), which can be directly
obtained from the coarse mesh 3-D or shell Finite Element (GY2)
analysis.  Thus the equation above provides the link between the FE
stress analysis data, hs

m and hs
b, and the peak stress, peak, at the

weld toe, necessary for the fatigue analysis
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Coarse 3D FE mesh model of a welded T-joint

Nodal forces Fx,i

The linearized stress field ( a, b) is determined from the distribution
of nodal forces Fx,i! (method of D. Pingsha, Batelle Columbus)
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A shell finite element and the membrane, m
hs, and

bending, b
hs, shell stresses

• The FE formulation for shell elements gives top and bottom stresses,
top, and bottom

• The stress distribution through the thickness is considered to be linear
• The membrane and bending stresses are obtained from

a top

b bottom
Shell element at midplane
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hs
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The use of the FE-shell stress analysis
data: a) welded joint; b) shell FE  model
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Note! The rectangles with blue edges are weld simulating shell elements with
thickness equal to the thickness of the thinner plate.
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The “membrane, m
hs, and bending, b

hs, hot spot
stresses” and the weld toe peak stress peak

The advantage of using expression

lies in the fact that the membrane stress hs
m and the bending stress

hs
b can be determined by simple decomposition of the linearized

through-thickness stress field, (x=0,y), which can be directly
obtained from the coarse mesh 3-D or shell Finite Element (GY2)
analysis.  Thus the equation above provides the link between the FE
stress analysis data, hs

m and hs
b, and the peak stress, peak, at the

weld toe, necessary for the fatigue analysis
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Stress concentration factor for a T-butt
weldment under tension load; (non-load carrying fillet weld)
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T-butt weldment subjected to pure tension;
Monahan’s equation for the dominant stress component over the entire critical cross section
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Tubular Welded Joint under Torsion and Bending
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Solid and FE model
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Shell Element Model Details

19197 nodes
18858 elements (linear quads)
114069 dof
Follows GY-2 modeling
practice

Material:
A22H Steel (ASTM A500 Cold Formed
Steel for Structural Tubing)
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Through-the-Thickness Stress Distribution for Unit Load (Loc. 1)
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Modeling of the residual stress effect
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Two plates A and B are connected by a double–sided butt weld. Another plate C
is welded to plates A by fillet welds as shown in the Figure below. The plate is
subjected to cyclic loading with a constant stress range of St = 80MPa. It is
assumed that the fabrication meets the standard requirements which allow the
maximum misalignments of the butt weld to be “e” = 3 mm.

- Where are fatigue cracks most likely to be expected?
- What is the expected fatigue life of the joint?

Material: welded steel
ys = 232 MPa, uts = 414MPa,

E = 190000 MPa
K’ = 1097 MPa,     n’ = 0.249

f’ = 1014MPa,      b= -0.132
f’ = 0.271,             c = -0.451

 = 180     - butt weld,    weld toe radius, r = 0.8 mm, t = 20mm
 = 450 - fillet weld

Example:
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- bending moment at the butt weld: M = 10 ( St)(t2•e)

- bending moment at fillet welds: M = 5 ( St)(t2•e)
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Stress Concentration Factor for Butt and T-Butt Weldments under
Axial and Bending Load: geometrical parameters and notation

Butt weldment

T-Butt weldment

g
=
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l = hp

PP MM
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t1= tp h
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h
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y
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M
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0.65

1 exp 0.9
2 11 2 ;

2.8 21 exp 0.45
2

t
t

W
h hK

W rW
th

2 0.6 pW t h h

0.25 4

1
3

21 exp 0.9 0.13 0.65 12 21 1.5 tanh tanh
11 exp 0.45

2

b
t

W h r
h r t tK rtW r

th t

2 0.6 pW t h h

2 14t
tK .

1 28.b
tK

Pure Tension

Pure Bending

(K.Iida and T. Uemura, ref. 11)

Butt Weld Stress Concentration Factors (K.Iida and T. Uemura, ref. 11)

t = 20mm, g = h = 3.5mm, = 18o, l = hp= 23mm, r = 0.8 mm
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Tensile nominal stress

t tS S
Nominal bending stress

3 3 3 0.45
20b t t t

eS S S S
t

Resultant hot spot stress

0.45 1.45hs t b t t tS S S S S S

Hot spot stress history

,0 ,1 ,2 ,30, 116, 0, 116,...hs hs hs hsS S S S

1 = 179.87 MPa; 1 = 0.0016492;

1 = 0 + 1 =0 + 179.87 = 179.87 MPa;

1 = 0 + 1 = 0 + 0.0016492 = 0.0016492

2nd reversal
1 = 179.87, 1 = 0.0016492Hot spot stress concentration factor

1st reversal
0 = 0, 0 = 0,

,

,

0.45

0.45 ;

0.45 0.45
1.45

0.45 0.45 1.29 2.14
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1.
5

8
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7
5 4
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t t t t t t
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K S K S

S K K

S K K S K K
S S

K K

K

2

1 1

1
0 .24 9

1 1
1

1 9 0 0 0 0

1 9 0 0 0 0 1 0 9

7 1

7

1 .8 1 6

2

2 2

1
0 .2 4 9

2 2 2

1 .8 7 1 1 6
1 9 0 0 0 0

2 2 1 9 0 0 0 0 2 1 0 9 7

2 = 207.55 MPa; 2 = 0.0012468;

2 = 1 - 2 = 179.87 – 207.55 = -27.68 MPa;

2 = 1 - 2 = 0.0016492 - 0.0012468= 0.000402
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(end of butt weld)
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0.65

1 exp 0.9
2 11 ;

2.8 21 exp 0.45
2

t
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W
h hK

W rW
th 2 0.3 2p pW t h t h

Pure Tension

2 42t
tK .
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1
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21 exp 0.9 0.13 0.65 12 2 21 1.9 tanh tanh
2 11 exp 0.45

2

pb
t

W h r
h t r t tK rt h tW r

th t

Pure Bending

2 0.3 2p pW t h t h 2 85b
tK .

Fillet Weld Stress Concentration Factors (K.Iida and T. Uemura, ref. 11)

t = 20mm, g = h = 3.5mm, = 18o, l = hp= 23mm, r = 0.8 mm
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Tensile nominal stress

t tS S
Nominal bending stress

3 3 3 0.225
2 2 20b t t t
eS S S S
t

Resultant hot spot stress

0.225 1.225hs t b t t tS S S S S S

Hot spot stress history

,0 ,1 ,2 ,30, 98, 0, 98,...hs hs hs hsS S S S

1 = 189.57 MPa; 1 = 0.001865;

1 = 0 + 1 =0 + 189.57 = 189.57 MPa;

1 = 0 + 1 = 0 + 0.001865 = 0.001865

2nd reversal
1 = 189.57, 1 = 0.001865Hot spot stress concentration factor

1st reversal
0 = 0, 0 = 0,

,
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2
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1
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2 2 2

2 .5 9 8
1 9 0 0 0 0

2 2 1 9 0 0 0 0 2 1 0 9 7

2 = 230.05 MPa; 2 = 0.001444;

2 = 1 - 2 = 189.57 – 230.5 = -40.93 MPa;

2 = 1 - 2 = 0.001865 - 0.001444= 0.000421
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Fracture Mechanics Approach to Fatigue
Analysis of Weldments (da/dN- K)
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Information path for fatigue life estimation based on
the da/dN- K method
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a) Structure

b) Component

c) Section with welded joint
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Stress intensity factor, K
(indirect method)

Weight function, m(x,y)
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da/dN- K Approach (cont’d)
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Material properties used in fatigue
analyses of weldments by the Fracture

Mechanics Method (da/dN- K)
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Residual Stress  Distributions in Welded Joints;
Butt Weldments

Residual stress distributions

Specimens

Welds
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Residual Stress Effect on the Fatigue Crack Growth Rate
(Specimens P and L and U)
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Fatigue cracks in weldments may grow through the HAZ
but most often they initiate in the HAZ but grow away
from the weld and through the base metal.

Therefore the Base Metal fatigue crack growth properties
are used for fatigue crack growth analysis of weldments.

mda C K
dN

Where: C and m - Base Metal properties
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Calculation of Stress Intensity Factors (K)
for Cracks in Weldments
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There are two methods available for obtaining
stress intensity factors for cracks in

weldments:
a) The Handbook ready made stress intensity factors K for cracks

in weldments like the handbook of SIFs by Y. Murakami et. al,
(editor), Stress Intensity Factors Handbook, Pergamon Press,
Oxford, 1987 (unfortunately the number of solutions for cracks
in weldemnts is very limited); The ready made K solutions are
usually obtained for fixed geometry (such as specific
geometrical dimensions of the weld) and they can’t be used for
estmating the K factor resultin from residual stresses.

b) The Weight Function (WF) method; The WFs make it possible to
solve a wide variety of K problems for cracks in weldments by
using a very limited number of general weight functions. The
same WF can be used for the estimation of K factors associated
with the presence of residual stresses.
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Handbook SIF

K=S( a)Y;

Y –form the handbook
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The Effective and the Residual Stress Intensity Factors
in a Butt Weldment

Weld
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Tubular Welded Joint under Torsion and Bending
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Courtesy of John Deere Co.



Shell Element Model Details

19197 nodes
18858 elements (linear quads)
114069 dof
Follows GY-2 modeling
practice

Material:
A22H Steel (ASTM A500 Cold Formed
Steel for Structural Tubing)
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FE Shell Linear Stress Field for Unit Load- Loc. 1
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Simulated Fatigue Crack Growth and  Fatigue Crack
Evolution in a Weldment Based on the Non-Linear

Through-the-Thickness Stress Distribution
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Geometry of the real final fatigue crack
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This is probably all.….
what I wanted to say…

Thank You !


