Multiaxial Fatigue

Introduction

Professor Darrell F. Socie University of Illinois at Urbana-Champaign

© 2003 Darrell Socie, All Rights Reserved

Multiaxial Fatigue - Lecture 0

Contact Information

Darrell Socie Mechanical Engineering 1206 West Green Urbana, Illinois 61801

Office: 3015 Mechanical Engineering Laboratory

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

d-socie@uiuc.edu Tel: 217 333 7630

Fax: 217 333 5634

4 of 14

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Multiaxial Fatigue - Lecture 0

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Multiaxial Fatigue - Lecture 0

Principal stresses may vary nonproportionally and/or change direction

© 2003 Darrell Socie, University of Illinois at Urbana-Champ

ial Fatigue - Lecture 0

6 of 14

aign, All Rights Res

y z

\rightarrow	1					
		t	ε _x	ε _z	σ_{x}	σz
		7	0.01	-0.005	63.5	0
9		15	0.01	-0.003	70.6	14.1
		30	0.01	-0.002	73.0	21.8
		50	0.01	-0.001	75.1	29.3
0		7 15 30 50	0.01 0.01 0.01	-0.003 -0.002 -0.001	70.6 73.0 75.1	14 21 29

Multiaxial Fatigue

© 2003 Darrell Socie, All Rights Reserved

12 of 14

16 of 14

Multiaxial Fatigue - Lecture 0

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Stress and Strain Distributions 100 % of applied stress 90 80 -20 -10 0 10 20 θ

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Res

13 of 14

17 of 14

Multiaxial Fatigue - Lecture 0 © 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

18 of 14

20 of 14

© 2003 Darrell Socie, University of Illinois at Urbana-Cha

mpaign, All Rights

19 of 14

23 of 14

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

cial Fatigue - Lecture 0

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Octahedral shear stress

Multiaxial Fatigue - Lecture 0

Multiaxial Fatigue

xial Fatigue - Lecture 0

tiaxial Fatigue - Lecture 0

Stress Strain Relationships

Professor Darrell F. Socie University of Illinois at Urbana-Champaign

© 2003 Darrell Socie, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

25 of 14

27 of 14

29 of 14

axial Fatigue - Lecture 0

Elastic Stress Strain Relationships Jenkin 1922 0 1-ν 0 0 "About six months ago I wrote a paper, knowing that I σx ε_x 0 0 0 1-vshould be very busy in the autumn and made a model σ_y to illustrate a point in it. But as I played with the model 0 0 0 ε_y ν $0 \qquad 0 \qquad \frac{1-2\nu}{2}$ σ_z to learn how to use it, it grew too strong for me and E εz 0 0 0 2 took command and for the last six months I have been τ_{xy} (1+v)(1-2v)γ_{xy} $1 - 2\nu$ 0 τ_{yz} 0 0 its obedient slave --- for the model explained the whole 0 0 γ_{yz} 2 of my subject Fatigue." 1-2v τ_{xz} γ_{xz} 0 0 0 0 2 "Fatigue in Metals," The Engineer, Dec. 8, 1922

26 of 14

28 of 14

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

 $F_1 = \sigma_1 - \sigma_3 - \sigma_{ys} = 0$

 $F_{2} = \sigma_{1} - \sigma_{2} - \sigma_{ys} = 0$ or $F_{3} = \sigma_{2} - \sigma_{3} - \sigma_{ys} = 0$

Mises

Multiaxial Fatigue - Lecture 0

Multiaxial Fatigue - Lecture 0

 $F = \sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2 - \sigma_{ys}^2 = 0$

tial Fatigue - Lecture 0

Multiaxial Fatigue - Lecture 0

38 of 14

40 of 14

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

xial Fatigue - Lecture 0

Multiaxial Fatigue - Lecture 0

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

39 of 14

Summary

- Isotropic Hardening
- Kinematic Hardening
- Cyclic creep or ratcheting
- Mean stress relaxation
- Nonproportional hardening

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Multiaxial Fatigue

Fatigue Mechanisms

Professor Darrell F. Socie University of Illinois at Urbana-Champaign

© 2003 Darrell Socie, All Rights Reserved

46 of 14

42 of 14

The Fatigue Process

- Crack nucleation
- Small crack growth in an elastic-plastic stress field
- Macroscopic crack growth in a nominally elastic stress field

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Final fracture

Multiaxial Fatigue - Lecture 0

 1903 - Ewing and Humfrey

 Very State

 N = 1,000

 N = 2,000

Cyclic deformation leads to the development of slip bands and fatigue cracks

 N = 10,000
 N = 40,000
 N_i = 170,000

 Ewing, J.A. and Humfrey, J.C. The fracture of meals under repeated alterations of stress", Philosophical Transactions of the Royal Society, Vol. A200, 1903, 241-250

 Multisular Fatgues - Leature 0
 C303 Damil Socie, University of Illinois at Urbane-Champaign, All Rights Reserved

ial Fatigue - Lecture 0

48 of 14

Slip Band in Copper

Polak, J. Cyclic Plasticity and Low Cycle Fatigue Life of Metals, Elsevier, 1991
Multiaxial Fatigue - Lecture 0 0 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 49 of 14

Ma, B-T and Laird C. "Overview of fatigue behavior in copper sinie crystals – Il Population, size, distribution and growth Kinetics of stage I cracks for tests at constant strain amplitude", Ada Metallurgica, Vol 37, 1999, 337-348 Multistala Fatigue - Lecture 0 0 2003 Darret Isocie, University of Illinois turbans-Champaign, Al Rights Reserved 51 of 14

Langford and Kusenberger, "Initiation of Fatigue Cracks in 4340 Steel", Metallurgical Transactions, Vol 4, 1977, 553-559

Multiaxial Fatigue - Lecture 0 © 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 52 of 14

53 of 14

Y. Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, 2002

Multiaxial Fatigue - Lecture 0 0 2003 Darrell Socio, University of Illinois at Urbana Champaign, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Cha

npaign, All Rights F

55 of 14

59 of 14

58 of 14

Multiaxial Fatigue - Lecture 0

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

tiaxial Fatigue - Lecture 0

Crack growth controlled by the notch plastic strains

Locally, the crack grows in shear Macroscopically it grows in tension

64 of 14

Multiaxial Fatigue - Lecture 0

Multiaxial Fatigue - Lecture 0

Plastic zone size is much larger than the material microstructure so that the microstructure does not play such an important role.

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

70 of 14

Multiaxial Fatigue - Lecture 0

74 of 14

76 of 14

Multiaxial Fatigue - Lecture 0

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights

dal Fatigue - Lecture 0

tiaxial Fatigue - Lecture 0

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

rsity of Illinois at Urbana-C

© 2003 Darrell Socie, Unive

versity of Illi

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

79 of 14

81 of 14

83 of 14

© 2003 Darrell Socie. Univ

78 of 14

82 of 14

Fatigue cracks nucleate in shear

Multiaxial Fatigue - Lecture 0

Fatigue cracks grow in either shear or tension depending on material and state of stress

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

axial Fatigue - Lecture 0

Multiaxial Fatigue - Lecture 0

Conclusions

- Tension mean stress affects both tension and torsion
- Torsion mean stress does not affect tension or torsion

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

90 of 14

94 of 14

Sines $\frac{\Delta \tau_{oct}}{2} + \alpha (3\sigma_h) = \beta$ $\frac{1}{6} \sqrt{(\Delta \sigma_x - \Delta \sigma_y)^2 + (\Delta \sigma_x - \Delta \sigma_z)^2 + (\Delta \sigma_y - \Delta \sigma_z)^2 + 6(\Delta \tau_{xy}^2 + \Delta \tau_{xz}^2 + \Delta \tau_{yz}^2)} + \alpha (\sigma_x^{mean} + \sigma_y^{mean} + \sigma_z^{mean}) = \beta$

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

91 of 14

93 of 14

95 of 14

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

al Fatigue - Lecture 0

Multiaxial Fatigue - Lecture 0

Multiaxial Fatigue - Lecture 0

 $\tau(t) + a\sigma_h(t) = b$

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

$$\begin{array}{c|c} \Sigma_{ij}(M,t) & \mathsf{E}_{ij}(M,t) \\ \hline & & \\$$

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

axial Fatigue - Lecture 0

Multiaxial Fatigue - Lecture 0

98 of 14

Multiaxial Fatigue - Lecture 0

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

101 of 14

106 of 14

Multiaxial Fatigue - Lecture 0

Multiaxial Fatigue - Lecture 0

$$\Delta \hat{\gamma} = \left(\Delta \gamma^{\alpha}_{max} + S \Delta \epsilon^{\alpha}_{n} \right)^{\frac{1}{\alpha}}$$

$$\frac{\Delta \gamma_{max}}{2} + S\Delta \varepsilon_n = A \frac{\sigma_f - 2\sigma_{n,mean}}{E} (2N_f)^b + B\varepsilon_f (2N_f)^c$$

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Fatigue - Lecture 0

Multiaxial Fatigue - Lecture 0

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

112 of 14

tiaxial Fatigue - Lecture 0

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

111 of 14

113 of 14

 $\sigma_n \frac{\Delta \epsilon_1}{2} = \frac{\sigma_f^{2}}{E} (2N_f)^{2b} + \sigma_f^{2} \hat{\epsilon_f} (2N_f)^{b+c}$

Liu

ial Fatigue - Lecture 0

Virtual strain energy for both mode I and mode II cracking

$$\begin{split} \Delta W_{I} &= (\Delta \sigma_{n} \Delta \epsilon_{n})_{max} + (\Delta \tau \Delta \gamma) \\ \Delta W_{I} &= 4 \sigma_{f}^{'} \epsilon_{f}^{'} (2N_{f})^{b+c} + \frac{4 \sigma_{f}^{'2}}{E} (2N_{f})^{2b} \\ \Delta W_{II} &= (\Delta \sigma_{n} \Delta \epsilon_{n}) + (\Delta \tau \Delta \gamma)_{max} \\ \Delta W_{II} &= 4 \tau_{f}^{'} \gamma_{f}^{'} (2N_{f})^{bo+co} + \frac{4 \tau_{f}^{'2}}{G} (2N_{f})^{2bo} \end{split}$$

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

115 of 14

114 of 14

xial Fatigue - Lecture 0

Multiaxial Fatigue - Lecture 0 © 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Load Case	$\Delta \gamma/2$	σ _{hoop} MPa	σ_{axial} MPa	N_{f}
Torsion	0.0054	0	0	45,200
with tension	0.0054	0	450	10,300
with compression	0.0054	0	-500	50,000
with tension and	0.0054	450	-500	11,200
compression				

118 of 14 Multiaxial Fatigue - Lecture 0 © 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Conclusions

- All critical plane models correctly predict these results
- Hydrostatic stress models can not predict these results

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reser

© 2003 Darrell Socie, Un

versity of Illinois at Urbana-Cl

paign, All Rights Re

		Model	Comparison
_	_		

tiaxial Fatigue - Lecture 0

Aultiaxial Fatigue - Lecture 0

Summary of calculated fatigue lives

Model	Equation	Life
Epsilon	6.5	14,060
Garud	6.7	5,210
Ellyin	6.17	4,450
Brown-Miller	6.22	3,980
SWT	6.24	9,930
Liu I	6.41	4,280
Liu II	6.42	5,420
Chu	6.37	3,040
Gamma		26,775
Fatemi-Socie	6.23	10,350
Glinka	6.39	33,220

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Str

Multiaxial Fatigue - Lecture 0

Multiaxial Fatigue - Lecture 0

120 of 14

122 of 14

124 of 14

Strain Based Models Summary

Two separate models are needed, one for tensile growth and one for shear growth

121 of 14

123 of 14

125 of 14

- Cyclic plasticity governs stress and strain ranges
- Mean stress effects are a result of crack closure on the critical plane

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Cyclic Pla	sticity
-	Δε
	Δγ
	$\Delta \epsilon^{p}$
	$\Delta \gamma^{p}$
	ΔεΔσ
	$\Delta\gamma\Delta\tau$
	$\Delta \epsilon^{p} \Delta \sigma$
	$\Delta \gamma^{p} \Delta \tau$

Mean Stresses

al Fatique - Lecture 0

axial Fatigue - Lecture 0

$$\begin{split} \Delta \epsilon_{eq} &= \frac{\sigma_{f}^{-} - \sigma_{mean}}{E} (2N_{f})^{b} + \epsilon_{f}^{'} (2N_{f})^{c} \\ \frac{\Delta \gamma_{max}}{2} + S\Delta \epsilon_{n} &= (1.3 + 0.7S) \frac{\sigma_{f}^{'} - 2\sigma_{n}}{E} (2N_{f})^{b} + (1.5 + 0.5S) \epsilon_{f}^{'} (2N_{f})^{c} \\ &= \frac{\Delta \gamma}{2} \left(1 + k \frac{\sigma_{nmax}}{\sigma_{y}} \right) = \frac{\tau_{f}^{'}}{G} (2N_{f})^{bo} + \gamma_{f}^{'} (2N_{f})^{co} \\ &= \sigma_{n} \frac{\Delta \epsilon_{1}}{2} = \frac{\sigma_{f}^{'^{2}}}{E} (2N_{f})^{2b} + \sigma_{f}^{'} \epsilon_{f}^{'} (2N_{f})^{b+c} \\ &= \Delta W_{i} = \left[(\Delta \sigma_{n} \Delta \epsilon_{n})_{max} + (\Delta \tau \Delta \gamma) \right] \left(\frac{2}{1-R} \right) \end{split}$$

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Multiaxial Fatigue

Professor Darrell F. Socie University of Illinois at Urbana-Champaign

© 2003 Darrell Socie, All Rights Reserved

Multiaxial Fatigue - Lecture 0

128 of 14

126 of 14

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

rsity of Illinois at Urba

cie, Ui

ian. All Ria

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

134 of 14

xial Fatigue - Lecture 0

Fracture Mechanics Models

$$\begin{split} & \frac{da}{dN} {=} C \Big(\Delta K_{eq} \Big)^n \\ \Delta K_{eq} {=} \Big[\Delta K_1^4 {+} 8 \Delta K_{II}^4 {+} 8 \Delta K_{III}^4 / (1 {-} \nu) \Big]^{0.5} \\ \Delta K_{eq} {=} \Big[\Delta K_1^2 {+} \Delta K_1^2 {+} (1 {+} \nu) \Delta K_{III}^2 \Big]^{0.5} \\ \Delta K_{eq} {=} \Big[\Delta K_1^2 {+} \Delta K_1 \Delta K_{II} {+} \Delta K_{II}^2 \Big]^{0.5} \\ \Delta K_{eq} (\epsilon) {=} \Big[(F_{II} \frac{E}{2(1 {+} \nu)} \Delta \gamma)^2 {+} (F_I E \Delta \epsilon)^2 \Big]^{0.5} \sqrt{\pi a} \\ \Delta K_{eq} (\epsilon) {=} F G \Delta \gamma \Big(1 {+} k \frac{\sigma_{n,max}}{\sigma_{ys}} \Big) \sqrt{\pi a} \end{split}$$

mpaign, All Rights Reserved

138 of 14

Fracture SurfacesImage: SurfacesIm

© 2003 Darrell Socie, Univer

Multiaxial Fatigue - Lecture (

Multiaxial loading has little effect in Mode I

iois at Url

All Rights Reserv

139 of 14

141 of 14

Crack closure makes Mode II and Mode III calculations difficult

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Multiaxial Fatigue

ial Fatique - Lecture 0

Nonproportional Loading

Professor Darrell F. Socie University of Illinois at Urbana-Champaign

© 2003 Darrell Socie, All Rights Reserved

Outline

Multiaxial Fatigue - Lecture 0

- State of Stress
- Stress-Strain Relationships
- Fatigue Mechanisms
- Multiaxial Testing
- Stress Based Models
- Strain Based Models
- Fracture Mechanics Models
- Nonproportional Loading
- Stress Concentrations

Nonproportional Loading

- In and Out-of-phase loading
- Nonproportional cyclic hardening

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Re

144 of 14

Variable amplitude

© 2003 Darrell Socie, U

145 of 14

ian. All Rights Res

© 2003 Darrell Socie, Un

al Fatigue - Lecture 0

Multiaxial Fatigue - Lecture 0

ois at Urbana-Cha

aign, All Right

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

158 of 14

160 of 14

Fatigue - Lecture 0

xial Fatigue - Lecture 0

ultiaxial Fatigue - Lecture 0

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

159 of 14

© 2003 Darrell Socie, University of Illinois at Urbana-Cha

All Ric

163 of 14

© 2003 Darrell Socie, University of Illinois at Urba

Nonproportional Loading Summary

- Nonproportional cyclic hardening increases stress levels
- Critical plane models are used to assess fatigue damage

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Multiaxial Fatigue

Stress Concentrations

Professor Darrell F. Socie University of Illinois at Urbana-Champaign

© 2003 Darrell Socie, All Rights Reserved

Multiaxial Fatigue - Lecture 0

168 of 14

170 of 14

172 of 14

tiaxial Fatigue - Lecture 0

Multiaxial Fatigue - Lecture 0

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Ch

174 of 14

176 of 14

178 of 14

Multiaxial Fatigue - Lecture 0

cial Fatigue - Lecture 0

Multiaxial Fatigue - Lecture 0

Uniaxial loading that produces multiaxial stresses at notches

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

- Multiaxial loading that produces uniaxial stresses at notches
- Multiaxial loading that produces multiaxial stresses at notches

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

al Fatigue - Lecture 0

180 of 14

184 of 14

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

ial Fatigue - Lecture 0

© 2003 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Multiaxial Fatigue - Lecture 0

© 2003 Darrell Socie, Unive

al Fatigue - Lecture 0

rsity of Illinois at Urbana-Champaign, All Rights R

188 of 14

187 of 14

Notches Summary

- Uniaxial loading can produce multiaxial stresses at notches
- Multiaxial loading can produce uniaxial stresses at notches
- Multiaxial stresses are not very important in thin plate and shell structures
- Multiaxial stresses are not very important in crack growth

