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Fatigue Calculations

Who really believes 
these numbers ?
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SAE Specimen

Suspension

Transmission

Bracket

Fatigue Under Complex Loading: Analysis and Experiments, SAE AE6, 1977
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Analysis Results
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Material Variability
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Probabilistic Models

Probabilistic models are no better than the 
underlying deterministic models
They require more work to implement
Why use them?
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Quality and Cost

Taguchi
Identify factors that influence performance
Robust design – reduce sensitivity to noise
Assess economic impact of variation

Risk / Reliability
What is the increased risk from reduced testing ?
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Risk Contribution Factors

Operating
Temperature

Analysis Uncertainty

Speed

Material
Properties

Manufacturing
Flaws
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Uncertainty and Variability
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Deterministic versus Random

Deterministic – from past measurements the future position 
of a satellite can be predicted with reasonable accuracy

Random – from past measurements the future position of 
a car can only be described in terms of probability and 
statistical averages

•Probabilistic Fatigue    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 13 of 352

Deterministic Design

Stress Strength

Safety
Factor

Variability and uncertainty is accommodated by introducing 
safety factors.  Larger safety factors are better, but how much 
better and at what cost?  
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Probabilistic Design

Stress Strength

Reliability = 1 – P( Stress > Strength )
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3σ Approach
3σ contains 99.87% of the data

If we use 3σ on both stress and strength

The probability of the part with the lowest strength
having the highest stress is very small

P( s < S ) = 2.3 10-3

σ≈=≤≥Σ= − 5.4103.5)Sss(P)failure(P 6I

For 3 variables, each at 3 σ:

σ≈= − 7.5102.1)failure(P 8
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Benefits

Reduces conservatism (cost) compared to 
assuming the “worst case” for every design 
variable
Quantifies life drivers – what are the most 
important variables and how well are they 
known or controlled ?
Quantifies risk
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Probabilistic Aspects of Fatigue

Introduction
Basic Probability and Statistics
Statistical Techniques
Analysis Methods 
Characterizing Variability
Case Studies
FatigueCalculator.com
GlyphWorks
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Deterministic versus Random

Deterministic – from past measurements the future position 
of a satellite can be predicted with reasonable accuracy

Random – from past measurements the future position of 
a car can only be described in terms of probability and 
statistical averages
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Random Variables

Discrete - fixed number of outcomes
Colors 

Continuous - may have any value in the 
sample space

Strength
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Descriptive Statistics

Mean or Expected Value
Variance / Standard Deviation
Coefficient of Variation
Skewness
Kurtosis
Correlation Coefficient
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Mean or Expected Value

Central tendency of the data

( )
N

x
XExMean
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1i
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∑
====µ=
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Variance / Standard Deviation
Dispersion of the data

( )
N

)xx(
XVar

N

1i

2
i∑

=

−
=

)X(Varx =σ

Standard deviation
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Coefficient of Variation

x

xCOV
µ
σ

=

Useful to compare different dispersions

µ = 10
σ = 1

COV = 0.1

µ = 100
σ = 10

COV = 0.1
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Skewness

Skewness is a measure of the asymmetry of the data 
around the sample mean. If skewness is negative, the 
data are spread out more to the left of the mean than 
to the right. If skewness is positive, the data are spread 
out more to the right. The skewness of the normal 
distribution (or any perfectly symmetric distribution) is zero.

( ) 3
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Kurtosis

Kurtosis is a measure of how outlier-prone a distribution is. 
The kurtosis of the normal distribution is 3. Distributions that
are more outlier-prone than the normal distribution have 
kurtosis greater than 3; distributions that are less 
outlier-prone have kurtosis less than 3.
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Covariance

A measure of the linear association between 
random variables

[ ])Y()X(E)Y,X(COV YXxy µ−µ−==σ
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Correlation Coefficient
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Probability

Basic probability
Conditional probability
Reliability
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Basic Probability

( ) 1AP0 ≤≤

( ) certain1AP =

( ) eimposssibl0AP =

The probability of event A occurring:
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Conditional Basic Probability

( ) ( ) ( ) ( )
BandABorA

BAPBPAPBAP IU −+=

( ) ( )
( )AP

BAPABP I
=

( ) ( )
( )BP

BAPBAP I
=

P(B) given A has occurred

union intersection
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Independent Events

1 2

If A and B are unrelated

( ) ( )BPABP =

( ) ( )APBAP =

( ) ( ) ( )BPAPBAP ⋅=I

Suppose the probability of bar 1 failing is 0.03 
and the probability of bar 2 failing is 0.04. 

What is the probability of the structure failing?
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Failure Probability

Bar 1 or bar 2 fails

( ) 03.0AP =

( ) 04.0BP =

( ) ( ) ( ) 0012.0BPAPBAP =⋅=I

P( failure) = 0.03 + 0.04 - 0.0012 = 0.0688

( ) ( ) ( ) ( )BAPBPAPBAP IU −+=
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Reliability

P( no failure ) = Reliability

( ) AnotofyprobabilitAPDefine

( ) ( )A1PAP −=

( )BAPliabilityRe I=

( ) ( ) ( )BPAPBAP ⋅=I

( ) 9312.096.097.0BAP =⋅=I

For the 2 bar structure

( ) 0688.0liabilityRe1failureP =−=
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Structural Reliability

Collapse occurs if any member fails

( ) ( )n4321 AAAAAPAP ⋅⋅⋅⋅= IIII

( ) ( ) ( ) ( ) ( ) ( )n4321 APAPAPAPAPAP ⋅⋅⋅⋅⋅⋅⋅=

( ) linkeachfor01.0APSuppose =

( ) ( ) 932.099.0AP 7 ==
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Reliability
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6 Sigma

6 sigma is 1 in a billion ( 0.999999999 Reliability )

Suppose a structure has 1000 bolted joints:

( ) ( ) 999999.0999999999.0AP 1000 ==
1 in a million

3 sigma is ( 0.99865 Reliability )

( ) ( ) 26.099865.0AP 1000 ==

74 % failures
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Statistical Distributions

Uniform
Normal
LogNormal
Gumble
Weibull

http://www.itl.nist.gov/div898/handbook/

A useful on-line reference:
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Cumulative Distribution Function

( ) ( )xXPXFx ≤=

( ) 0Fx =∞−

( ) 1Fx =∞

0

1

a b

Fx(X)
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Probability Density Function
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Probability
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Survival Function
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Hazard Function

a b

hx(X)

( )XF1
)X(f)X(h

x

x
x −

=

Instantaneous failure rate
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Mean or Expected Value
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Variance

( ) dx)X(f)X(XVar x
2

x∫
∞

∞−

µ−=

( ) ( ) 2
x

2XEXVar µ−=

Probability Density

x

)X(Varx =σ
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Normal Distribution
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Normal Probability Plot
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Normal Plot
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LogNormal Distribution
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Useful Relationships

( )2
xlnxlnx 5.0exp σ+µ=µ
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Median / Mean ratio

COVX
0 1 2 3 4 50

0.2

0.4

0.6

0.8

1.0

X

X
µ

•Probabilistic Fatigue    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 53 of 352

σlnX - COVX
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LogNormal Probability Plot
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LogNormal Plot
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Gumbel Extreme Value
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Gumble Probability Plot
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Gumble Plot 
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Weibull
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Weibull Probability Plot
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Weibull Plot
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99.9 % Probability

785Weibull
1223Gumbel
1125LogNormal
893Normal

Estimated maximum force from the distributions
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Comparison
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All distributions are approximately normal around the median
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Joint Probability Density

x

y

fxy(x,y)

µX

µY

Reliability = 1 – P( Stress > Strength )

Strength

Stress
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Joint Probability Density
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2D - Joint Probability Density

Contours of 
equal probability
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Acceptable Risk

Safety
P(failure) ~  10-6 → 10-9

Economic
P(failure) ~  10-2 → 10-4
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Extreme Values

For most durability problems, we are not interested in
the “large extremes” of stress or strength.  Failure is much 
more likely to come from moderately high stresses
combined with moderately low strengths.
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Key Points

Basic Nomenclature
Random Variables

Statistical Distribution
Cumulative distribution function
Mean
Variance

Probability
Marginal
Conditional
Joint
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Probabilistic Aspects of Fatigue

Introduction
Basic Probability and Statistics
Statistical Techniques
Analysis Methods 
Characterizing Variability
Case Studies
FatigueCalculator.com
GlyphWorks
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Statistical Techniques

Normal Distributions
LogNormal Distributions
Monte Carlo
Sampling
Distribution Fitting

•Probabilistic Fatigue    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 73 of 352

Failure Probability

)Sss(P ≤≥Σ I

Let Σ be the stress and S the fatigue strength

Given the distributions of Σ and S find the 
probability of failure

Stress, Σ Strength, S

s
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Normal Variables

Linear Response Function

∑
=

+=
n

1i
iio XaaZ

Xi ~ N( µi , Ci )

∑
=

µ+=µ
n

1i
iioz aa

∑
=

σ=σ
n

1i

2
i

2
iz a
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Calculations

Z = S - Σ

µz = µS - µΣ

22
Sz Σσ+σ=σ

Σ ~ N( 100 , 0.2 ) σΣ = 20
µz = 200 -100 = 100

S ~ N( 200 , 0.1 ) σS = 20

Stress, Σ Strength, S

Safety factor of 2

2.282020 22
z =+=σ

Let Z be a random variable:
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Failure Probability

Failure will occur whenever Z <= 0

Z = S - Σ

Z = µz – z σz = 0

z = 3.54 standard deviations

P(failure) = 2 x 10-4

2.28
100z

Z

Z =
σ
µ

=

For this case only, a safety factor of 2 means a probability 
of failure of 2 x 10-4. Other situations will require different
safety factors to achieve the same reliability.
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Failure Distribution

Stress, Σ Strength, S

What is the expected distribution in fatigue lives?
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Fatigue Data

b
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LogNormal Variables

∏
=

=
n

1i

a
io

iXaZ

a’s are constant and Xi ~ LN( xi , Ci )

∏
=

=
n

1i

a
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−+=
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1i

a2
XZ 1C1CCOV
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Calculations

Stress, Σ Strength, S

~ LN( 250 , 0.2 ) σ = 50

~ LN( 1000 , 0.1 ) σ = 100

b
1

'
f

f 2
SN2 








σ

∆
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'
fσ

b = -0.125
2
S∆

8'
f

8
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Results

'
fσ∆S/2 2Nf Percentile Life

µx 250 1000 355,368 99.9 17,706,069
COVx 0.2 0.1 4.72 99 4,566,613

95 1,363,200
µlnx 5.50 6.90 11.21 90 715,589

X 245 995 73,676 50 73,676
σx 50 100 1,676,831 10 7,586

σlnx 0.198 0.100 1.774 5 3,982
1 1,189

b = -0.125 0.1 307
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Monte Carlo Methods

( ) ( ) 









εσ+

σ
=

∆ +cb
f

'
f

'
f

b2
f

2'
ff N2N2

E
E

2
SK

Given random variables for Kf, ∆S,         
Find the distribution of 2Nf

'
f

'
f and εσ

Z = 2Nf = ?
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Simple Example

Probability of rolling a 3 on a die

1 2 3 4 5 6

fx(x) 1/6

Uniform discrete distribution
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Computer Simulation

1. Generate random numbers between 1 and 6,
all integers

2. Count the number of 3’s

Let Xi = 1 if 3
0 otherwise

( ) ∑
=

=
n

1i
iX

n
13P
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EXCEL

=ROUNDUP( 6 * RAND() , 0 )

=IF( A1 = 3 , 1 , 0 )

=SUM($B$1:B1)/ROW(B1)

5 0 0
3 1 0.5
4 0 0.333333
4 0 0.25
5 0 0.2
6 0 0.166667
1 0 0.142857
3 1 0.25
3 1 0.333333
6 0 0.3
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Results

0.1

0.2

0.3

0.4

1 100 200 300 400 500

trials
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y
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Evaluate π

x

y P( inside circle )

4
rP

2π
=

π = 4 P

x = 2 * RAND() - 1
y = 2 * RAND() - 1

IF( x2 + y2 < 1 , 1 , 0 )

1

-1

1

-1
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π

0

1

2

3

4

1 100 200 300 400 500

π

trials
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Monte Carlo Simulation 

Stress, Σ Strength, S

~ LN( 250 , 0.2 ) σ = 50

~ LN( 1000 , 0.1 ) σ = 100'
fσ

b = -0.125
2
S∆

b
1

'
f

f 2
SN2 








σ

∆
=

Randomly choose values of S and
from their distributions'

fσ

Repeat many times
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Generating Distributions

0

1

x

Fx(X)

Randomly choose a value between 0 and 1

x = Fx
-1( RAND )

RAND
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Generating Distributions in EXCEL

=LOGINV(RAND(),lnµ,lnσ)

=NORMINV(RAND(),µ,σ)

Normal

Log Normal
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EXCEL

893 204 134,677          
1102 301 32,180            
852 285 6,355              
963 173 929,249          
1050 283 35,565            
1080 265 77,057            
965 313 8,227              
1073 213 420,456          
1052 226 224,000          
954 322 5,878              
965 240 68,671            
993 207 277,192          
1191 368 11,967            
831 210 59,473            

'
fσ

2
S∆

2Nf
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Simulation Results

103

99.9 %

99 %

90 %

50 %

10 %
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104 105 106 107 108

Monte Carlo Analytical
Mean 11.25 11.21
Std 1.79 1.77
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Summary

Simulation is relatively straightforward and simple

Obtaining the necessary input data is difficult
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Nomenclature

Population: the totality of the observations

Sample: a subset of the population

Population mean: µx

Population variance: σx
2

Sample mean: X

Sample variance: s2

( ) xXE µ=

( ) 2
x

2sE σ=



49

•Probabilistic Fatigue    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 96 of 352

Sample Mean and Variance

in EXCEL  =AVERAGE(A1:An)

in EXCEL  =STDEV(A1:An)

n

x
X

n

1
∑

=

1n

)Xx(
s

n

12

−

−
=

∑

Mean

Variance
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Confidence Intervals

( ) xXE µ=

What is the probability that a sample X is greater than µx?  50%

P( L <= µx <= U ) = 1 - α

There is a 1 – α chance of selecting a sample in the interval
between L and U that contains the true mean of the population
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Translation

90% confidence

If we sampled a population many times to 
estimate the mean, 90% of the time the true 
population mean would lie between the 
computed upper and lower limit.
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Confidence Interval - mean

Lower limit of µ

x
x

1n, n
stX µ≤− −α

Upper limit of µ

x
x

1n, n
stX µ≥+ −α

For a normal distribution:
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Sample Size

0 5 10 15 20 25 30
Sample size, n

0
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1.0
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2.0

x
x

1n, n
stX µ≤− −α

n
t 1n, −α

95%

90%

•Probabilistic Fatigue    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 101 of 352

5 Samples from Normal Distribution

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

95 % confidence – 5 samples will be outside confidence limit

Lower limit above mean
Upper limit below mean

Sample Number

µx = 100   σx = 10
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Confidence Interval - variance

Upper limit of σ

2
x

1n,1
2

2
xs)1n(

σ≤
χ

−
−α−

For a normal distribution:
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Sample Size
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Maximum Load Data
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90% confidence COV 0.41
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Maximum Load Data

Maximum Load
0 200 400 600 800 1000 1200
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Normal   COV = 0.34

LogNormal

Normal   COV = 0.41

Uncertainty in Variance is just as important, 
perhaps more important than the choice of the distribution
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Choose the “Best” Distribution

0 200 400 600 800 1000
Maximum Load

Normal

LogNormal

Gumble

Weibull

0.001

0.002
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15 samples from a Normal Distribution
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Goodness of Fit Tests
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Analytical Tests

Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and Some Comparisons, 
Journal of the American Statistical Association, Vol. 69, pp. 730-737. 

Kolmogorov-Smirnov

Chakravarti, Laha, and Roy, (1967). Handbook of Methods of Applied Statistics, Volume I, 
John Wiley and Sons, pp. 392-394. 

Anderson-Darling

Snedecor, George W. and Cochran, William G. (1989), Statistical Methods, Eighth Edition, 
Iowa State University Press. 

Chi-square
any univariate distribution

tends to be more sensitive near the center of the distribution

gives more weight to the tails 
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Distributions
Normal

Strength
Dimensions

LogNormal
Fatigue Lives
Large variance in properties or loads

Gumble
Maximums in a population

Weibull
Fatigue Lives
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Statistics Software

www.palisade.com

BestFit Minitab

www.minitab.com
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Central Limit Theorem

as n → ∞ is the standard normal distribution

If X1, X2, X3 ….. Xn is a random sample from the population,
with sample mean X, then the limiting form of

n/
XZ X

σ
µ−

=
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Translation

When there are many variables affecting the outcome,
The final result will be normally distributed even if the 
individual variable distributions are not.
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Example
Probability of rolling a die

1 2 3 4 5 6

fx(x) 1/6

Uniform discrete distribution

Let Z be the summation of six dice

Z = X1 + X2 + X3 + X4 + X5 + X6
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Results

0

10

20

30

40

50

60

6 12 18 24 30 36
Z

Fr
eq

ue
nc

y

Central limit theorem states that the result should be 
normal for large n

500 trials

CZ = 0.20

XZ = 21.12
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Central Limit Theorem

Sums:  Z = X1 ± X2 ± X3 ± X4 ± ….. Xn

Z → Normal as n increases

Products:  Z = X1 • X2 • X3 • X4 • ….. Xn

Z → LogNormal as n increases

Normal and LogNormal distributions are often employed 
for analysis even though the underlying population 
distribution is unknown.
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Key Points

All variables are random and can be characterized 
by a statistical distribution with a mean and variance.
The final result will be normally distributed even if 
the individual variable distributions are not.

Analysis Methods

Professor Darrell F. Socie
Department of Mechanical and

Industrial Engineering

© 2003-2005 Darrell Socie, All Rights Reserved

Probabilistic Aspects of Fatigue
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Probabilistic Aspects of Fatigue

Introduction
Basic Probability and Statistics
Statistical Techniques
Analysis Methods
Characterizing Variability
Case Studies
FatigueCalculator.com
GlyphWorks
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Reliability Analysis
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Probabilistic Analysis Methods

Monte Carlo
Simple
Hypercube sampling
Importance sampling

Analytical
First order reliability method FORM
Second order reliability method SORM
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Limit States

Limit States
Equilibrium
Strength
Deformation
Wear
Functional
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Limit State Problems

Z(X) = Z( Q, L, b, h )

Response function

Limit State function

g = Z(X) - Zo = 0

Same as the failure function
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Limit States

Stress

Strength

g < 0

g > 0

failures

g = Strength - Stress
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Monte Carlo

Stress

Strength

g < 0

g > 0

failures

Monte Carlo is simple but what if each of these calculations
required a separate FEM model?
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Low Probabilities of Failure

Stress

Strength

failures

rare event

Need about 105 simulations for P(Failure) = 10-4
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Transform Variables 
u1

u2

x

x
1

xu
σ

µ−
=

µu1 = 0
σu1 = 1
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Standard Monte Carlo

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1
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4u1

u2

1000 trials

g = 3 – ( u1 + u2 )

018.0
N
N)f(P f ==

u1 and u2 normally distributed
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Multiple Simulations
1 25
2 15
3 19
4 21
5 16
6 22
7 16
8 12
9 15
10 11
11 19
12 15
13 20
14 17
15 9
16 23
17 15
18 20
19 14
20 21
21 16
22 18
23 22
24 13
25 20

1000 trials

25 simulations

µ = 0.017

σ = 0.0040

25,000 calculations
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Stratified Sampling Methods

-4 -3 -2 -1 0 1 2 3 4

Divide into regions of constant 
probability and then sample by region
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Stratified Sample
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Each box should have 
one sample drawn at random
from the underlying pdf 

100 trials

25 simulations

µ = 0.02

σ = 0.0093

2,500 calculations
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Latin Hypercube Sample
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10 trials

25 simulations

µ = 0.017

σ = 0.038

250 calculations
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Importance Sampling (continued)

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4u1

u2

β = 2

The probability of a sample 
outside the circle is PS = 0.14
( 2 standard deviations )

0183.0P
N
N)f(P S

S

f ==

138 simulations
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Analytical Methods Strategy

Develop a response function
Transform the set of N variables to a set of 
uncorrelated u variables with µ=0 and σ=1
Locate the most likely failure point
Approximate the integral of the joint 
probability distribution over the failure region
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Analytical Methods Outline

Response Surface
Transform Variables
Limit State Concept
Most Probable Point
Probability Integration

FORM
SORM
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Response Surface Methodology

Response surface methodology is a well 
established collection of mathematical and 
statistical techniques for applications where the 
response of interest is influenced by several 
variables.

ε+⋅⋅⋅⋅= )x,x,x,x(f)X(Z n321
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Response Surface

X1
X2

Z

Fit a surface through the points

Solution points
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Mathematical Representation

⋅⋅+++

⋅⋅⋅⋅⋅⋅+++

⋅⋅⋅⋅⋅⋅++++=

323312211

2
33
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332211o

xxCxxCxxC
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xAxAxAA)X(Z Linear

Incomplete Quadradic
Complete Quadradic

Solutions
Linear N + 1

Complete Quadradic N(N + 1)/2
Incomplete Quadradic 2N + 1
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Evaluation of Response Surface

Factorial Design

Suppose stress is affected by speed and temperature

high low

hi
gh

lo
w

X

XX

X

temperature

sp
ee

d 4 deterministic solutions needed

2n solutions
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Evaluation of Response Surface
Factorial Design

high low

hi
gh

lo
w

X

XX

X

temperature

sp
ee

d 9 deterministic solutions needed

3n solutions
X X X

X

X
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Graphical Representation

X2X1

Z
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Joint Probability Density

x

y

fxy(x,y)
Stress

Strength
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2D - Joint Probability Density
Contours of 
equal probability

µx

µy

Stress

Strength
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Transform Variables 

x

x
1

xu
σ

µ−
=

µu = 0
σu = 1

Any distribution can be mapped into a normal distribution

u1

u2

d ( )2d5.0expP −∝

The mathematics and behavior of normal distributions 
are well understood
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X to u mapping

f(X)

F(X)F(X)

f(X)

uniform normal
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Limit States

Limit states define probability problems

g = Strength(x1) – Stress(x2)

For example:

Prob( g<= 0 ) = Probability of failure = Pf

Analysis focuses on g = 0
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Failure Probability

g = 0

u1

u2

∫
<

=
0g

2121uu dudu)u,u(f)Failure(P
21
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Thought Experiment

Suppose stress and strength had the same distribution

What is the probability of failure?

-3 -2 -1 0 1 2 3
x
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g function

u1

u2

g = Strength(x1) – Stress(x2)

Pf = 50%
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Probable Combinations of u1 and u2

g = 0

u1

u2

Most likely failure point

g functions are not straight lines in N dimensional space
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Most Probable Point

u1

g = 0
u2

β

Probability is related to the minimum distance point β
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Safety Index β

Sometimes called reliability index

Unlike safety factors, failure probability is 
directly related to the safety index 

Pf = Φ(-β)

β is a number measured in standard deviations
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Determining the MPP

Requires an efficient numerical search to find the 
tangent point of a hypersphere (β-sphere) and the limit 
state function in u space
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Probability Integration

FORM
SORM
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First Order Reliability Model

g = 0

u2

β

exact

Linear approximation

u1

( ) ( )∑
=

−+=
n

1i
iiio *uuaaug

FORM

MPP
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FORM

u1

Pf ≈ Φ(-β)
u2

β

MPP

u2*

u1*

The joint probability density is rotationally symmetric 
so it is possible to rotate the coordinate system
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Second Order Reliability Model

g = 0
u2

β
exact

Quadradic approximation

u1

( ) ( ) ( ) ( )( )∑ ∑ ∑∑
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SORM
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SORM

u2

β

MPP

u2*

u1*

( ) ( )∏
=

βκ−β−Φ=
n

1i
if 1P

κi surface curvature
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Sensitivity Factors
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with a change in mean
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Sensitivity Factors
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Deterministic Sensitivity Factors

iX
)X(Z

∂
∂

Change in response mean with respect to a 
change in the input variable mean

Frequently normalized by the means to compare 
relative importance of variables

X/X
Z/)X(Z

i∂
∂

•Probabilistic Fatigue    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 161 of 352

Probabilistic Sensitivity Coefficient

ii
i /

P/PS
σσ∂

∂
=σ

ii
i /

P/PS
µµ∂

∂
=µ

Standard deviation sensitivity

Mean deviation sensitivity
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Probabilistic Sensitivity Factors

1
X

)X(Z 2
ii

i
i =ασ








∂

∂
∝α ∑

αi - probabilistic sensitivity
Z(X) - response
Xi - input variable
σi - standard deviation of Xi
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Software

General Purpose
Durability
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Probabilistic Aspects of Fatigue
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Probabilistic Aspects of Fatigue

Introduction
Basic Probability and Statistics
Statistical Techniques
Analysis Methods 
Characterizing Variability
Case Studies
FatigueCalculator.com
GlyphWorks
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Sources of Variability
customers

materials manufacturing

usage

107

Fatigue Life, 2Nf

1
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Stress, Σ Strength, S
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Variability and Uncertainty

Variability:  Every apple on a tree has a different mass.

Uncertainty: The variety of the apple is unknown.

Variability:  Fracture toughness of a material

Uncertainty: The correct stress intensity factor solution



85

•Probabilistic Fatigue    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 168 of 352

Sources of Variability

Stress Variables
Loading
Customer Usage
Environment

Strength Variables
Material
Processing
Manufacturing Tolerance
Environment
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Sources of Uncertainty

Statistical Uncertainty
Incomplete data (small sample sizes)

Modeling Error
Analysis assumptions

Human Error
Calculation errors
Judgment errors
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Modeling Variability

Products:  Z = X1 • X2 • X3 • X4 • ….. Xn

Z → LogNormal as n increases

Central Limit Theorem:

COVX

0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

σ l
nX σlnX ~ COVX

COVX is a good measure of variability 
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Standard Deviation, lnx

COVX

1 2 3
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99.7% of the data is within a factor of ± 1.33 of the mean for a COV = 0.1

COV and LogNormal Distributions
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Variability in Service Loading

Quantifying Loading Variability
Maximum Load
Load Range
Equivalent Stress
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Maximum Force 
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Maximum Load Correlation
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Loading Variability
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Variability in Loading
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Mechanisms and Slopes
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Effect of Slope on Variability
99.9 %

99 %

90 %

50 %

10 %

1 %

0.1 %

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

n =  10 5 3

Equivalent Load
0.1 1 100.1 1 10

n COV
3 0.53
5 0.43
10 0.38

•Probabilistic Fatigue    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 179 of 352

Loading History Variability

Test Track
Customer Service
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Test Track Variability
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Customer Usage Variability
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Variability in Environment

Inclusions
Pit depth
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Inclusions That Initiated Cracks

Barter, S. A., Sharp, P. K., Holden, G. & Clark, G. “Initiation and early growth of fatigue cracks in an aerospace
aluminium alloy”, Fatigue & Fracture of Engineering Materials & Structures 25 (2), 111-125. 

COV = 0.27
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Pits That Initiated Cracks

7010-T7651

Pre-corroded specimens

300 specimens

246 failed from pits

Crawford et.al.”The EIFS Distribution for Anodized and Pre-corroded 7010-T7651 under Constant Amplitude Loading” 
Fatigue and Fracture of Engineering Materials and Structures, Vol. 28, No. 9 2005, 795-808 
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Pit Size Distribution
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Pit Depth Variability

Pits
12 Data Points
Median  24.37
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Dolly, Lee, Wei, “The Effect of Pitting Corrosion on Fatigue Life”
Fatigue and Fracture of Engineering Materials and Structures, Vol. 23, 2000, 555-560
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Variability in Materials

Tensile Strength
Fracture Toughness
Fatigue

Fatigue Strength
Fatigue Life

Strain-Life
Crack Growth
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Tensile Strength - 1035 Steel
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Metals Handbook, 8th Edition, Vol. 1, p64

Mean = 602
COV = 0.045

•Probabilistic Fatigue    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 189 of 352

Fracture Toughness
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Kies, J.A., Smith, H.L., Romine, H.E. and Bernstein, H, “Fracture Testing of Weldments”, ASTM STP 381, 1965, 328-356

Mar-M 250 Steel
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Fatigue Variability
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Fatigue Life Variability
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Production torsion bars
5160H steelOne lot, 71 parts

25 lots, 300 parts

Metals Handbook, 8th Edition, Vol. 1, p219

µx = 123,000 cycles
COV = 0.25

µx = 134,000 cycles
COV = 0.27
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Statistical Variability of Fatigue Life
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Sinclair and Dolan, “Effect of Stress Amplitude on the Variability in Fatigue Life of 7075-T6 Aluminum Alloy”
Transactions ASME, 1953

7075-T6 Specimens
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COV vs Fatigue Life

440 14,000 0.12
315 25,000 0.38
280 220,000 0.70
245 1,200,000 0.67
210 12,000,000 1.39

∆S COVX
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Variability in Fatigue Strength
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Strain Life Data for 950X Steel
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29 Individual Data Sets
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29 Individual Data Sets (continued)

0.1 1 10

Median  0.57
COV   1.15

99.9 %

99 %

90 %

50 %

10 %

1 %

0.1 %

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

'
fε

-0.8 -0.6 -0.4 -0.2

c

Mean  -0.62
COV    0.23

99.9 %

99 %

90 %

50 %

10 %

1 %

0.1 %

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y



100

•Probabilistic Fatigue    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 198 of 352

Input Data Simulation
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Simulation Results
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Correlation
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Generating Correlated Data

z1 =     ( rand() )Φ
z2 =     ( rand() )Φ

2
213 1zzz ρ−+ρ=

)zexp( 1lnln
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f '
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f σσ σ+µ=σ

3bb zb σ+µ=
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Correlated Properties
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Curve Fitting
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Property Distribution
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Correlation
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Simulation
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Strength Coefficient
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Crack Growth Data
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Virkler, Hillberry and Goel, “The Statistical Nature of Fatigue Crack Propagation”, Journal of Engineering Materials 
and Technology, Vol. 101, 1979, 148-153
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Crack Growth Rate Data
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Crack Growth Properties
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Beware of Correlated Variables

( )2/m1SC
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Nf and C are linearly related and should have 
the same variability, but

07.0COV
fN =

44.0COVC =

because C and m are correlated.
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Correlation
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Correlated Variables
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Calculated Lives
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Manufacturing/Processing Variability

Bolt Forces
Surface Finish
Drilled Holes
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Variability in Bolt Force
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Surface Roughness Variability
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Drilled Holes
Fighter Spectrum
154 Data Points
Median  126,750
COV   0.22 in life
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From: J.P. Butler and D.A. Rees, "Development of Statistical Fatigue Failure Characteristics of 0.125-inch 
2024-T3 Aluminum Under Simulated Flight-by-Flight Loading,"  ADA-002310 (NTIS no.), July 1974.

180 drilled holes in a single plate

COV   0.07 in strength
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Analysis Uncertainty

Miners Linear Damage rule
Strain Life Analysis
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COV = 1.02

Miners Rule

From Erwin Haibach “Betriebsfestigkeit”, Springer-Verlag, 2002

A safety factor of 10 in life would result in a 10% chance of failure
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SAE Specimen

Suspension

Transmission

Bracket

Fatigue Under Complex Loading: Analysis and Experiments, SAE AE6, 1977
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Analysis Results
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Strain-Life analysis of all test data
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Material Variability
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Modeling Uncertainty

( )∏
=

−+=
n

1i

a2
X 1C1CCOV

2
i

i

CU = 1.09

Analysis Uncertainty CU = ?

The variability in reproducing the original strain life data 
from the material constants is CM ~ 0.44

2
M

2
N2

U C1
C1

C1 f

+

+
=+

90% of the time the analysis is within a factor of 3 !
99% of the time the analysis is within a factor of 10 !
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Variability from Multiple Sources

( )∏
=

−+=
n

1i

a2
X 1C1CCOV

2
i

i

Suppose we have 4 variables each with a COV = 0.1

The combined variability is COV = 0.29

Suppose we reduce the variability of one of the variables to 0.05

The combined variability is now COV = 0.27

If all of the COV’s are the same, it doesn’t do any good to 
reduce only one of them, you must reduce all of them !
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Variability from Multiple Sources

( )∏
=

−+=
n

1i

a2
X 1C1CCOV

2
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i

Suppose we have 3 variables each with a COV = 0.1
and one with COV = 0.4

The combined variability is COV = 0.65

Suppose we reduce the variability of these variables to 0.05

The combined variability is now COV = 0.60

If one of the COV’s is large, it doesn’t do any good to 
reduce the others, you must reduce the largest one !
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Variability Summary
Source COV

Service Loading 0.5

Materials 0.1
Manufacturing 0.1
Surface Finish 0.1

Environment 0.3

Strength

Stress

Fatigue Lives
Analysis Uncertainty

1.0
1.0

5

Stress
StrengthlifeFatigue 
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Variability and Uncertainty

Variability:  Every apple on a tree has a different mass.

Uncertainty: The variety of the apple is unknown.

Variability:  Multiple samples of the same material

Uncertainty: What is the material
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Strain Life Data for 93 Steels
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Uncertainty for all Steels 
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Uncertainty for Structural Steels
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Variability and Uncertainty

Fatigue Strength Coefficient

Variability Uncertainty Combined
All Steels 0.12 0.48 0.75

Structural Steel 0.12 0.12 0.24
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Quiz

What is the expected variability ?

At my last seminar everyone hit a golf ball and we 
recorded the maximum acceleration.
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Results

12.9
7.7
5.88
11.1
15.5
10.3
18.1
11.64
4.26
0.37

µ
σ

COV

Case Studies

Professor Darrell F. Socie
Department of Mechanical and

Industrial Engineering

© 2003-2005 Darrell Socie, All Rights Reserved

Probabilistic Aspects of Fatigue
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Probabilistic Aspects of Fatigue

Introduction
Basic Probability and Statistics
Statistical Techniques
Analysis Methods 
Characterizing Variability
Case Studies
FatigueCalculator.com
GlyphWorks
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Case Studies

DARWIN
Southwest Research

Bicycle
Loading Histories
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A Software Framework for 
Probabilistic Fatigue Life Assessment

ASTM Symposium on 
Probabilistic Aspects of Life Prediction

Miami Beach, Florida
November 6-7, 2002

R. C. McClung, M. P. Enright, H. R. Millwater*, 
G. R. Leverant, and S. J. Hudak, Jr.

Southwest Research

Slides 6 – 27 used with permission of of Craig McClung
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Motivation
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UAL Flight 232
July 19,1989
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Turbine Disk Failure
Anomalies in titanium engine disks

Hard Alpha
Very rare
Can cause failure
Not addressed by safe life methods

Enhanced life management process
Requested by FAA
Developed by engine industry
Probabilistic damage tolerance methods
Supplement to safe life approach

SwRI and engine industry developed DARWIN with FAA funding
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Probabilistic Damage Tolerance

Probabilistic Fracture Mechanics

Probability of DetectionAnomaly Distribution

Finite Element Stress Analysis

Material Crack Growth Data

NDE Inspection Schedule

Pf vs. Cycles

Risk Contribution Factors
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Zone-Based Risk Assessment

Define zones based on similar stress, 
inspection, anomaly distribution, lifetime

Total probability of fracture for zone:
(probability of having a defect)  x  (POF given 

a defect)
Defect probability determined by anomaly 

distribution, zone volume
POF assuming a defect computed with 

Monte Carlo sampling or advanced 
methods

POF for disk obtained by summing zone 
probabilities

As individual zones become smaller (number of 
zones increases), risk converges down to 
“exact” answer

1

2 3 4

m 

5 6 7
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Fracture Mechanics Model of Zone

m 

7

Retrieve stresses 
along line

Fracture Mechanics Model 
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Finite Element Model
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Stress Processing

FE Stresses and plate definition

stress 
gradient

Stress gradient extraction

FE Analysis
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Anomaly Distribution
# of anomalies per volume of material as function of defect size

Library of default anomaly distributions for HA (developed by RISC)
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Probability of Detection Curves
Define probability of NDE flaw detection as function of flaw size
Can specify different PODs for different zones, schedules
Built-in POD library or user-defined POD
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Random Inspection Time
“Opportunity Inspections” during on-condition maintenance

Inspection time modeled with Normal distribution or CDF table
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Output: Risk vs. Flight Cycles
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Output: Risk Contribution Factors
Identify regions of component with highest risk
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Implementation in Industry
FAA Advisory Circular 33.14 requests risk 

assessment be performed for all new 
titanium rotor designs

Designs must pass design target risk for rotors

Components

Risk

Maximum
Allowable

Risk

10-9

Risk
Reduction
Required

CA B
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Probabilistic Fracture Mechanics

Material Crack Growth Data

Finite Element Stress Analysis

Anomaly Distribution NDE Inspection

Pf vs. Flights

RPM-Stress Transform Crack Initiation
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DARWIN for Prognosis Studies
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Three Sources of Variability

Anomaly size (initial crack size)
FCG properties (life scatter)
Mission histories (stress scatter)
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Hard Alpha Defects in Titanium

Initial DARWIN focus on 
Hard Alpha
Small brittle zone in 

microstructure
Alpha phase stabilized by N 

accidentally introduced 
during melting

Cracks initiate quickly

Extensive industry effort 
to develop HA 
distribution
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Resulting Anomaly Distributions
Post 1995 Triple Melt/Cold Hearth + Vacuum Arc Remelt
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FCG Simulations for AGARD Data

Use individual fits to 
generate set of a vs. 
N curves for identical 
conditions

Characterize resulting 
scatter in total 
propagation life

Lognormal distribution  
appropriate in most 
cases

N, cycle
0 2000 4000 6000 8000
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m
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Corner Crack Specimen
∆Ki=18.7 MPa√m, ∆Kf=56.9 MPa√m

AGARD
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Engine Usage Variability

Stress/Speed: 
∆σ ∝ (RPM)2

Total Cyclic Life (LCF): 
Nf = Ni + Np

Ni ∝ ∆σ 3-5

Np ∝ ∆σ 3-4

Life/Speed: 
Nf ∝ (RPM)6

Component life is very sensitive 
to actual usage
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Usage Variability
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Components of Usage Variability:

• Mission type

• Mission-to-mission variability

• Mission mixing variability
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Web Site: www.darwin.swri.org
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Fatigue Design and Reliability in the 
Automotive Industry

Fatigue Design and Reliability
ESIS Publication 23

J-J. Thomas, G. Perroud, A. Bignonnet and D. Monnet

PSA Peugeot Citroën
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Fatigue Design at PSA

Fatigue design at PSA is done with a probabilistic 
approach that includes analysis of customer usage, 
production scatter, definition of the appropriate design 
loads and an acceptance testing criterion.
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Stress-Strength Interference

Stress Strength

Reliability = 1 – P( Stress > Strength )

How do you really get these distributions ?

Design Load

How do you establish a design load ?
How do you validate the design ?
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Stress Distribution

Variability in loading has two components, 
how it is used and how it is driven.

Car Usage
Highway, city, fully loaded, empty etc.

Driving Style
passive, aggressive etc. 

The usage of a car is independent of the owners driving style
so that the distributions of car usage and driving style can
be obtained separately.

•Probabilistic Fatigue    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 265 of 352

Car Usage

Customer surveys
k l ck % rkl %
1 Unloaded 27

1 Highway 10
2 Good Road 25
3 Mountain 40
4 City 25

2 Half Load 58
1 Highway 5
2 Good Road 30
3 Mountain 30
4 City 35

3 Fully Loaded 15
1 Highway 15
2 Good Road 25
3 Mountain 40
4 City 20

12 Customer Usage 
Categories



134

•Probabilistic Fatigue    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 266 of 352

Owner Behavior
Instrumented Vehicles
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Extensive field testing for 
each customer usage 
category produces a large 
number of histograms.

Let the usage histogram 
be denoted Ukl
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Extrapolation
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Virtual Customers

Thousands of virtual customers can now be generated 
by combining customer usage with driving style.

[ ] [ ]∑= *
klklk

i UrcNU

[ ]iU rainflow histogram for an individual car

N  kilometers
ck car loading, % 
rkl car usage, % 

[ ]*
klU distributions of rainflow histograms for 

different car usage classifications
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Design Loads

Initial design is done on the basis of a single 
constant amplitude load, Feq

Find a constant amplitude load and number of cycles
that will produce the same fatigue damage as the customer
operating a car for the design life.
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Equivalent Fatigue Loading
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Distribution of Feq

µF

ασF

Fn

Fn = µF + ασFDesign Customer:
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Choosing α
Contours of 
equal probability

y

xµx

µY

-3σx

3σY

1
2

3
4

Stress

Strength

If we use 3σ on both stress and strength

3σ P( s < S ) = 2.3 10-3

σ≈=≤≥Σ= − 5.4103.5)Sss(P)failure(P 6I
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Distribution of Strength

106

Sexp

µS

σS
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What Strength is Needed?

µF

ασF

Fn µS

βσS
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Some Statistics

Z = S - F

Suppose we want a probability of failure of 1 in 50,000
5

f 10x2P −=

( )
2
F

2
S

FS

Z

Z
f

1 1.4P
σ+σ

µ−µ
=

σ
µ

==Φ−

Fn = µS( 1 – β COVS )
Fn = µF( 1 + α COVF )
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Mean Component Strength
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Reliability
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Mean Strength

µF

ασF
Fn µS

βσS

µS = 1.4 Fn  for a reliability of 2 x 10-5

85.2
COV

F1

S

S

n

=
µ

−
=β
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Design

Design calculations are made with loads Fn
Large database relates Fn to vehicle parameters 
so that a new vehicle can be designed from 
historical measurements

Fatigue calculations are made with material 
properties β standard deviations from the 
mean
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Component Testing

Test load is frequently higher than Fn to get 
failures near the design life

Component strength not life !
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Interpreting the Test Data

Component tests are done with small sample sizes

2
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Validation

Full scale vehicle simulation done at the end for 
design final validation
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Extrapolation
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How does this process work?
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Service Loading Spectra
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Problem Statement

Given a rainflow histogram for a single user, 
extrapolate to longer times

Given rainflow histograms for multiple users, 
extrapolate to more users
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Probability Density
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Kernel Smoothing
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Sparse Data
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Exceedance Plot of 1 Lap
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10X Extrapolation
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Results
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Exceedance Diagram
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Problem Statement

Given a rainflow histogram for a single 
user, extrapolate to longer times
Given rainflow histograms for multiple 
users, extropolate to more users
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Extrapolated Data Sets
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Issues

In the first problem the number of cycles is 
known but the variability is unknown and 
must be estimated

In the second problem the variability is known 
but the number and location of cycles is 
unknown and must be estimated
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Assumption
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On average, more severe users tend 
to have more higher amplitude cycles 
and fewer low amplitude cycles
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Translation
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Damage Regions
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ATV Data - Most Damaging in 19
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ATV Exceedance
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Airplane Data - Most Damaging in 334
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Airplane Exceedance
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Tractor Data - Most Damaging in 54
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Tractor Exceedance
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www.FatigueCalculator.com

Professor Darrell F. Socie
Department of Mechanical and

Industrial Engineering

© 2004-2005 Darrell Socie, All Rights Reserved

Probabilistic Aspects of Fatigue
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Probabilistic Aspects of Fatigue

Introduction
Basic Probability and Statistics
Statistical Techniques
Analysis Methods 
Characterizing Variability
Case Studies
FatigueCalculator.com
GlyphWorks
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www.FatigueCalculator.com

•Probabilistic Fatigue    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 309 of 352

Probabilistic Fatigue Analysis



156

•Probabilistic Fatigue    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 310 of 352

Modeling Variability

Products:  Z = X1 • X2 • X3 • X4 • ….. Xn

Z → LogNormal as n increases

Central Limit Theorem:

COVX
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COVX is a good measure of variability 
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Standard Deviation, lnx

COVX
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Strain Life Analysis
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Material Properties
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Stress Concentration
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Results
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Results (continued)
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Results (continued)
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Results (continued)

•Probabilistic Fatigue    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 319 of 352

Ten Simulations
Life COV

6470 0.959
6930 0.898
6710 0.688
6640 0.908
6580 0.869
6470 0.959
7010 0.723
6690 0.908
6170 0.791
6560 0.971

Mean 6623 0.8674
COV 0.038 0.114
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29 Individual Data Sets
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29 Individual Data Sets (continued)
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Correlation
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Correlated Variables
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Results (continued)
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Results (continued)
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Uncorrelated Variables
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Results (continued)
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Strain Amplitude
± 1000 ± 250
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Deterministic Analysis
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Deterministic Analysis (continued)
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Deterministic Analysis (continued)
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Deterministic Analysis Results
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Probabilistic Analysis
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Probabilistic Analysis (continued)
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Probabilistic Analysis (continued)
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Probabilistic Analysis Results

GlyphWorks

Professor Darrell F. Socie
Department of Mechanical and

Industrial Engineering

© 2005 Darrell Socie, All Rights Reserved

Probabilistic Aspects of Fatigue
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Probabilistic Aspects of Fatigue
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GlyphWorks / Rainflow
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StatStrain.flo
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StatStrain Glyph
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StatOutput.xls
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StatOutput.xls (continued)

Probabilistic Sensitivity, Channel 6
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StatOutput.xls (continued)

Channel # 6  Total Channels 1

Variable Probabilistic Deterministic
NumCases 11 Load History Variables 0.89 -5.42

Median 45634 ScaleFactor 0.89 -5.42
COV 1.91 Offset 0.00 0.00

Stress Concentrators 0.05 -5.51
Probability (%) Life Kf 0.05 -5.51

99 817179 Material Properties 0.25 -14.54
90 223648 E 0.00 -4.37
50 45634 Sfp 0.23 3.42
10 9311 b 0.00 -4.39
1 2548 efp 0.00 1.42

c 0.00 -9.86
np 0.00 -2.32
Kp 0.10 1.56

Analysis Variables 0.37 1.00
Uncertainty 0.37 1.00

Life Distribution Sensitivity
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StatOutput.xls (continued)

Variable Distribution Value
Scale 

Parameter Value
Scale 

Parameter
ScaleFactor Normal 100 0.25 103 0.18

Offset Normal 0 0.10 -0.01 0.08
Kf Uniform 3 0.05 3.0 0.04
E None 208000 0.00 208000 0.00

Sfp Log-Normal 1000 0.10 1054 0.11
b None -0.1 0.00 -0.10 0.00

efp None 1 0.20 1.0 0.00
c None -0.5 0.00 -0.50 0.00

np None 0.2 0.00 0.20 0.00
Kp Log-Normal 1200 0.10 1194 0.10

Uncertainty Log-Normal 1 0.50 0.93 0.48

Inputs Outputs
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StatStress.flo
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Rainflow Extrapolation
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Duration Extrapolation
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Results Files
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Rainflow Duration
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Percentile Extrapolation
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Results

Probabilistic Aspects of Fatigue


