Probabilistic Aspects of Fatigue

Introduction

Professor Darrell F. Socie Department of Mechanical and Industrial Engineering

© 2003-2005 Darrell Socie, All Rights Reserved

Darrell Socie Mechanical Engineering 1206 West Green Urbana, Illinois 61801

Office: 3015 Mechanical Engineering Laboratory

dsocie@uiuc.edu

Tel: 217 333 7630 Fax: 217 333 5634

TSInput1					
		StrainL	.ife1		Who really believes these numbers ?
Test(s)	Display				
<u>)</u>					
	· · · · · · · · · · ·		· · · · · · · · · ·	· · · · ·	
	1etaDataDisplay1			· · · · · · · · · · · · · · · · · · ·	
	fetaDataDisplay1	Export	Copy C Di	· · · · · · · · · · · · · · · · · · ·	
	fetaDataDisplay1	Export (Copy Di Mode Inpr	· · · · · · · · · · · · · · · · · · ·	
	fetaDataDisplay1 Clear ChanNur 1	Export 0 nber Life 6 4.098E4 Repeat	Copy Di Mode Inp s Damage Auto	· · · · · · · · · · · · · · · · · · ·	
	fetaDataDisplay1 Clear ChanNur 1 2	Export (nber Life 6 4.098E4 Repeat 7 8840 Repeats	Copy Di Mode Inpr s Damage Autr Damage Autr		
	fetaDataDisplay1	Export 0 nber Life 6 4.098E 4 Repeat 7 8840 Repeats 8 1.585E 4 Repeat	Copy Di Mode Inp s Damage Autr Damage Autr s Damage Autr		
	fetaDataDisplay1 Clear ChanNur 1 2 3	Export (0 nber Life 6 4.098E4 Repeat 7 8840 Repeats 8 1.585E4 Repeat	Copy Di Mode Inpi s Damage Autt Damage Autt s Damage Autt		

Fatigue Under Complex Loading: Analysis and Experiments, SAE AE6, 1977

Deterministic – from past measurements the future position of a satellite can be predicted with reasonable accuracy

Random – from past measurements the future position of a car can only be described in terms of probability and statistical averages

variability and uncertainty is accommodated by introducing safety factors. Larger safety factors are better, but how much better and at what cost?

Reliability = 1 – P(Stress > Strength)

14 of 352

 3σ contains 99.87% of the data

P(s < S) = 2.3 10⁻³

If we use 3σ on both stress and strength

 $\text{P(failure)} = \text{P(} \ \Sigma \geq \text{s} \ \cap \ \text{s} \leq \text{S} \text{)} = 5.3 \ 10^{-6} \approx 4.5 \, \sigma$

The probability of the part with the lowest strength having the highest stress is very small

For 3 variables, each at 3 σ :

P(failure) =1.2 $10^{-8} \approx 5.7 \,\sigma$

- Reduces conservatism (cost) compared to assuming the "worst case" for every design variable
- Quantifies life drivers what are the most important variables and how well are they known or controlled ?
- Quantifies risk

Probabilistic Aspects of Fatigue

Basic Probability and Statistics

© 2003-2005 Darrell Socie, All Rights Reserved

Deterministic – from past measurements the future position of a satellite can be predicted with reasonable accuracy

Random – from past measurements the future position of a car can only be described in terms of probability and statistical averages

- Discrete fixed number of outcomes
 - Colors
- Continuous may have any value in the sample space
 - Strength

- Mean or Expected Value
- Variance / Standard Deviation
- Coefficient of Variation
- Skewness
- Kurtosis
- Correlation Coefficient

Central tendency of the data

Mean =
$$\mu_x = \overline{x} = E(X) = \frac{\sum_{i=1}^{N} x_i}{N}$$

23 of 352

Variance / Standard Deviation

Dispersion of the data

$$\operatorname{Var}(\mathbf{X}) = \frac{\sum_{i=1}^{N} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{2}}{N}$$

Standard deviation

$$\sigma_x = \sqrt{Var(X)}$$

24 of 352

$$COV = \frac{\sigma_x}{\mu_x}$$

Useful to compare different dispersions

$$\begin{array}{ll} \mu = 10 & \mu = 100 \\ \sigma = 1 & \sigma = 10 \\ \text{COV} = 0.1 & \text{COV} = 0.1 \end{array}$$

Skewness

Skewness is a measure of the asymmetry of the data around the sample mean. If skewness is negative, the data are spread out more to the left of the mean than to the right. If skewness is positive, the data are spread out more to the right. The skewness of the normal distribution (or any perfectly symmetric distribution) is zero.

Skewness(X) =
$$\frac{\sum_{i=1}^{N} (x_i - \overline{x})^3}{N\sigma^3}$$

```
    Probabilistic Fatigue
    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved
    26 of 352
```


Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the normal distribution is 3. Distributions that are more outlier-prone than the normal distribution have kurtosis greater than 3; distributions that are less outlier-prone have kurtosis less than 3.

Kurtosis(X) =
$$\frac{\sum_{i=1}^{N} (x_i - \overline{x})^4}{N\sigma^4}$$

A measure of the linear association between random variables

$$\sigma_{xy} = COV(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

29 of 352

Reliability

The probability of event A occurring:

$$\label{eq:posterior} \begin{split} 0 &\leq P\bigl(A\bigr) \leq 1 \\ P\bigl(A\bigr) &= 1 \mbox{ certain } \\ P\bigl(A\bigr) &= 0 \mbox{ imposssible } \end{split}$$

Probabilistic Fatigue
 © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved


```
    Probabilistic Fatigue
    © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved
```


What is the probability of the structure failing?

Bar 1 or bar 2 fails

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A) = 0.03$$

$$P(B) = 0.04$$

$$P(A \cap B) = P(A) \cdot P(B) = 0.0012$$

$$P(\text{ failure}) = 0.03 + 0.04 - 0.0012 = 0.0688$$

Probabilistic Fatigue
 © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

P(no failure) = Reliability Define P(\overline{A}) probability of not A P(\overline{A}) = P(1 - A) Reliability = P($\overline{A} \cap \overline{B}$) P($\overline{A} \cap \overline{B}$) = P(\overline{A}) · P(\overline{B}) For the 2 bar structure

 $P(\overline{A} \cap \overline{B}) = 0.97 \cdot 0.96 = 0.9312$ P(failure) = 1-Reliability = 0.0688

35 of 352

Probabilistic Fatigue
 © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

6 sigma is 1 in a billion (0.999999999 Reliability)

Suppose a structure has 1000 bolted joints:

 $P(\overline{A}) = (0.999999999)^{1000} = 0.9999999$ 1 in a million

3 sigma is (0.99865 Reliability)

 $P(\overline{A}) = (0.99865)^{1000} = 0.26$

74 % failures

Probabilistic Fatigue
 © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

39 of 352

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

42 of 352

Probabilistic Fatigue © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

 $\begin{aligned}
& \mu_{\ln x} = \ln \left(\frac{\mu_x}{\sqrt{1 + \text{COV}_x^2}} \right) \\
& \sigma_{\ln x}^2 = \ln \left(1 + \text{COV}_x^2 \right) \\
& \text{COV}_x = \sqrt{\exp(\sigma_{\ln x}^2) - 1} \\
& \mu_x = \exp(\mu_{\ln x} + 0.5 \sigma_{\ln x}^2) \\
& \overline{X}_x = \exp(\mu_{\ln x}) = \frac{\mu_x}{\sqrt{1 + \text{COV}_x^2}}
\end{aligned}$

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Estimated maximum force from the distributions

Normal	893
LogNormal	1125
Gumbel	1223
Weibull	785

 Joint Probability Density

 Normal distributions

 $f_{xy}(x,y) = \frac{1}{2\pi\sigma_x \sigma_y \sqrt{1-\rho^2}}$
 $exp\left[\frac{-1}{2(1-\rho^2)}\left\{\left(\frac{x-\mu_x}{\sigma_x}\right)^2 - 2\rho\left(\frac{x-\mu_x}{\sigma_x}\right)\left(\frac{y-\mu_y}{\sigma_y}\right) + \left(\frac{y-\mu_y}{\sigma_y}\right)^2\right\}\right]$

 ρ correlation coefficient

For most durability problems, we are not interested in the "large extremes" of stress or strength. Failure is much more likely to come from moderately high stresses combined with moderately low strengths.

Probabilistic Aspects of Fatigue

Statistical Techniques

© 2003-2005 Darrell Socie, All Rights Reserved

- Normal Distributions
- LogNormal Distributions
- Monte Carlo
- Sampling
- Distribution Fitting

Linear Response Function

$$Z = \mathbf{a}_{o} + \sum_{i=1}^{n} \mathbf{a}_{i} X_{i}$$
$$X_{i} \sim N(\mu_{i}, C_{i})$$
$$\mu_{z} = \mathbf{a}_{o} + \sum_{i=1}^{n} \mathbf{a}_{i} \mu_{i}$$
$$\sigma_{z} = \sqrt{\sum_{i=1}^{n} \mathbf{a}_{i}^{2} \sigma_{i}^{2}}$$

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

74 of 352

 $Z = S - \Sigma$

Failure will occur whenever Z <= 0

$$Z = \mu_z - z \sigma_z = 0$$
$$Z = \frac{\mu_z}{\sigma_z} = \frac{100}{28.2}$$

z = 3.54 standard deviations

 $P(failure) = 2 \times 10^{-4}$

For this case only, a safety factor of 2 means a probability of failure of 2×10^{-4} . Other situations will require different safety factors to achieve the same reliability.

Probabilistic Fatigue
© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

76 of 352

What is the expected distribution in fatigue lives?

 $Z = a_{o} \prod_{i=1}^{n} X_{i}^{a_{i}}$ a's are constant and $X_{i} \sim LN(x_{i}, C_{i})$ median $\overline{Z} = a_{o} \prod_{i=1}^{n} \overline{X}_{i}^{a_{i}}$ $COV \quad C_{Z} = \sqrt{\prod_{i=1}^{n} (1 + C_{X_{i}}^{2})^{a_{i}^{2}} - 1}$

Probabilistic Fatigue
© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Probabilistic Fatigue

	∆S/2	σ'_{f}	2N _f	Percentile	Life
μ _x	250	1000	355,368	99.9	17,706,069
COV _x	0.2	0.1	4.72	99	4,566,613
				95	1,363,200
μinx	5.50	6.90	11.21	90	715,589
Х	245	995	73,676	50	73,676
σχ	50	100	1,676,831	10	7,586
ମାnx	0.198	0.100	1.774	5	3,982
				1	1,189
b =	-0.125			0.1	307

^{© 2003-2005} Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

$$\frac{K_{f}\Delta S}{2} = \sqrt{E\left(\frac{{\sigma_{f}}^{'2}}{E}\left(2N_{f}\right)^{2b} + \sigma_{f}^{'}\epsilon_{f}^{'}\left(2N_{f}\right)^{b+c}\right)}$$

Given random variables for K_f, $\Delta S, \sigma_f$ and ϵ_f Find the distribution of 2N_f

$$Z = 2N_{f} = ?$$

- 1. Generate random numbers between 1 and 6, all integers
- 2. Count the number of 3's

Let X_i = 1 if 3 0 otherwise

$$P(3) = \frac{1}{n} \sum_{i=1}^{n} X_i$$

ilistic Fatigue	© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved	
-----------------	--	--

84 of 352

85 of 352

•Probab

=ROUNDUP(6 * RAND(), 0) =IF(A1 = 3, 1, 0) =SUM(\$B\$1:B1)/ROW(B1)

5	0	0
3	1	0.5
4	0	0.333333
4	0	0.25
5	0	0.2
6	0	0.166667
1	0	0.142857
3	1	0.25
3	1	0.333333
6	0	0.3

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

86 of 352

Repeat many times

$$x = F_x^{-1}(RAND)$$

```
Probabilistic Fatigue
© 2003-2
```

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

90 of 352

EXCEL				
	σ _f	$\frac{\Delta S}{2}$	2N _f	
	893	204	134,677	
	1102	301	32,180	
	852	285	6,355	
	963	173	929,249	
	1050	283	35,565	
	1080	265	77,057	
	965	313	8,227	
	1073	213	420,456	
	1052	226	224,000	
	954	322	5,878	
	965	240	68,671	
	993	207	277,192	
	1191	368	11,967	
	831	210	59.473	

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Simulation is relatively straightforward and simple

Obtaining the necessary input data is difficult

94 of 352

Sample variance: s²

$$E(\overline{X}) = \mu_{x}$$
$$E(s^{2}) = \sigma_{x}^{2}$$


```
Probabilistic Fatigue
```

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

97 of 352

Confidence Intervals $E(\overline{X}) = \mu_x$

What is the probability that a sample \overline{X} is greater than μ_x ? 50%

$$P(L \le \mu_x \le U) = 1 - \alpha$$

There is a $1 - \alpha$ chance of selecting a sample in the interval between L and U that contains the true mean of the population

90% confidence

If we sampled a population many times to estimate the mean, 90% of the time the true population mean would lie between the computed upper and lower limit.

Confidence Interval - mean

For a normal distribution:

Lower limit of $\boldsymbol{\mu}$

$$\overline{X} - t_{\alpha,n-1} \frac{s_x}{\sqrt{n}} \leq \mu_x$$

Upper limit of $\boldsymbol{\mu}$

$$\overline{X} + t_{\alpha,n-1} \frac{s_x}{\sqrt{n}} \geq \mu_x$$

99 of 352

For a normal distribution:

Upper limit of σ

$$\frac{(n\!-\!1){s_x}^2}{\chi^2_{1\!-\!\alpha,n\!-\!1}} \le {\sigma_x}^2$$

 Probabilistic Fatigue © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Chi-square

any univariate distribution

Snedecor, George W. and Cochran, William G. (1989), Statistical Methods, Eighth Edition, Iowa State University Press.

Kolmogorov-Smirnov

tends to be more sensitive near the center of the distribution

Chakravarti, Laha, and Roy, (1967). Handbook of Methods of Applied Statistics, Volume I, John Wiley and Sons, pp. 392-394.

Anderson-Darling

gives more weight to the tails

Stephens, M. A. (1974). *EDF Statistics for Goodness of Fit and Some Comparisons*, Journal of the American Statistical Association, Vol. 69, pp. 730-737.

108 of 352

Probabilistic Fatigue
© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

www.palisade.com

www.minitab.com

Probabilistic Fatigue
© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

If $X_1, X_2, X_3, \dots, X_n$ is a random sample from the population, with sample mean \overline{X} , then the limiting form of

$$Z = \frac{\overline{X} - \mu_X}{\sigma / \sqrt{n}}$$

as $n \to \infty~$ is the standard normal distribution

111 of 352

When there are many variables affecting the outcome, The final result will be normally distributed even if the individual variable distributions are not.

Sums: $Z = X_1 \pm X_2 \pm X_3 \pm X_4 \pm \dots + X_n$

 $Z \rightarrow Normal \mbox{ as } n \mbox{ increases}$

Products: $Z = X_1 \cdot X_2 \cdot X_3 \cdot X_4 \cdot \dots \cdot X_n$

 $Z \rightarrow LogNormal as n increases$

Normal and LogNormal distributions are often employed for analysis even though the underlying population distribution is unknown.

- All variables are random and can be characterized by a statistical distribution with a mean and variance.
- The final result will be normally distributed even if the individual variable distributions are not.

116 of 352

Probabilistic Aspects of Fatigue

Analysis Methods

Professor Darrell F. Socie Department of Mechanical and Industrial Engineering

© 2003-2005 Darrell Socie, All Rights Reserved

- Characterizing Variability
- Case Studies
- FatigueCalculator.com
- GlyphWorks

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

119 of 352

Probabilistic Fatigue © 2003-2005 Darrell S	Socie, University of Illinois at Urbana-Champaign, All Rights Reserved
---	--

121 of 352

Response function

Z(X) = Z(Q, L, b, h)

Limit State function

$$g = Z(X) - Z_o = 0$$

Same as the failure function

Need about 10^5 simulations for P(Failure) = 10^{-4}

Approximate the integral of the joint probability distribution over the failure region

Response Surface Methodology

Response surface methodology is a well established collection of mathematical and statistical techniques for applications where the response of interest is influenced by several variables.

$$Z(X) = f(x_1, x_2, x_3, \cdots , x_n) + \varepsilon$$

Mathematical Representation

$$\begin{split} Z(X) &= A_{_0} + A_{_1}x_{_1} + A_{_2}x_{_2} + A_{_3}x_{_3} + \cdots \cdots \quad \text{Linear} \\ &= B_{_1}x_{_1}^{^2} + B_{_2}x_{_2}^{^2} + B_{_3}x_{_3}^{^2} + \cdots \cdots \quad \text{Incomplete Quadradic} \\ &= C_{_1}x_{_1}x_{_2} + C_{_2}x_{_1}x_{_3} + C_{_3}x_{_2}x_{_3} + \cdots \quad \text{Complete Quadradic} \end{split}$$

	Solutions
Linear	N + 1
Incomplete Quadradic	2N + 1
Complete Quadradic	N(N + 1)/2

Evaluation of Response Surface

Suppose stress is affected by speed and temperature

Factorial Design

Probabilistic Fatigue © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Probabilistic Fatigue
© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Limit states define probability problems

For example:

 $g = Strength(x_1) - Stress(x_2)$

Prob(g<= 0) = Probability of failure = P_f

Analysis focuses on g = 0

Sometimes called reliability index

 $\boldsymbol{\beta}$ is a number measured in standard deviations

Unlike safety factors, failure probability is directly related to the safety index

$$\mathsf{P}_{\mathsf{f}} = \Phi(-\beta)$$

Requires an efficient numerical search to find the tangent point of a hypersphere (β -sphere) and the limit state function in **u** space

•Pro	babi	listic	Fatigue
------	------	--------	---------

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

156 of 352

Standard deviation sensitivity

$$S_{\sigma i} = \frac{\partial P/P}{\partial \sigma_i / \sigma_i}$$

Mean deviation sensitivity

$$\mathsf{S}_{\mu i} = \frac{\partial \mathsf{P} / \mathsf{P}}{\partial \mu_i / \mu_i}$$

Probabilistic Fatigue
 © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Drobobiliotio Estiguo	© 2002 2005 Darroll Social University of Illingia at Urbana Champaign All Bighta Basaniad
FIODADIIISTIC Fatigue	© 2003-2005 Darren Socie, Oniversity of himois at orbana-champaigh, An Rights Reserved

Software General Purpose

Durability

163 of 352

Probabilistic Aspects of Fatigue

Variability

Professor Darrell F. Socie Department of Mechanical and Industrial Engineering

© 2003-2005 Darrell Socie, All Rights Reserved

Variability: Every apple on a tree has a different mass.

Uncertainty: The variety of the apple is unknown.

Variability: Fracture toughness of a material

Uncertainty: The correct stress intensity factor solution

COV and LogNormal Distributions

	Standard Deviation, Inx		
001/	1	2	3
COV _x	68.3%	95.4%	99.7%
0.05	1.05	1.11	1.16
0.1	1.10	1.23	1.33
0.25	1.28	1.66	2.04
0.5	1.60	2.64	3.92
1	2.30	5.53	11.1

99.7% of the data is within a factor of \pm 1.33 of the mean for a COV = 0.1

Trobabilistic Fullgac Sector Darren Goole, oniversity of initiois at orbana-onanipaign, An rights reserved	Probabilistic Fatigue	© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved
--	-----------------------	--

183 of 352

Barter, S. A., Sharp, P. K., Holden, G. & Clark, G. "Initiation and early growth of fatigue cracks in an aerospace aluminium alloy", *Fatigue & Fracture of Engineering Materials & Structures* **25** (2), 111-125.

7010-T7651

Pre-corroded specimens

300 specimens

246 failed from pits

Crawford et.al."The EIFS Distribution for Anodized and Pre-corroded 7010-T7651 under Constant Amplitude Loading" Fatigue and Fracture of Engineering Materials and Structures, Vol. 28, No. 9 2005, 795-808

Probabilistic Fatigue © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

184 of 352

Metals Handbook, 8th Edition, Vol. 1, p64

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

188 of 352

Fracture Toughness Mar-M 250 Steel 99.9 % 26 Data Points Median 76.7 99 % **Cumulative Probability** COV 0.06 90 % 50 % 100 70 90 60 80 K_{Ic}, Ksi√in 10 % 1 % 0.1 %

Kies, J.A., Smith, H.L., Romine, H.E. and Bernstein, H, "Fracture Testing of Weldments", ASTM STP 381, 1965, 328-356 Probabilistic Fatigue © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 189 of 352

Transactions ASME, 1953 192 of 352

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved Probabilistic Fatigue

ΔS	X	COV
440	14,000	0.12
315	25,000	0.38
280	220,000	0.70
245	1,200,000	0.67
210	12,000,000	1.39

Variability in Fatigue Strength $\frac{\Delta S}{2} = S'_{f} (N_{f})^{b} \quad b \approx -0.085$ COV $C = \sqrt{\prod_{i=1}^{n} (1+C_{x_{i}}^{2})^{a_{i}^{2}} - 1}$

$$C_{s_{f}} = \sqrt{(1+1.39^{2})^{(-.085)^{2}} - 1} = 0.088$$

$$\frac{\Delta \varepsilon}{2} = \frac{\sigma_{f}^{'}(L, \mu_{\sigma_{f}}, \sigma_{\sigma_{f}})}{E} (2N_{f})^{b(N, \mu_{b}, \sigma_{b})} + \varepsilon_{f}^{'}(L, \mu_{\varepsilon_{f}}, \sigma_{\varepsilon_{f}})(2N_{f})^{c(N, \mu_{b}, \sigma_{b})}$$

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Probabilistic Fatigue © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Generating Correlated Data

$$z_{1} = \Phi(rand()) \qquad z_{1} = N(0,1)$$

$$z_{2} = \Phi(rand())$$

$$z_{3} = z_{1}\rho + z_{2}\sqrt{1-\rho^{2}}$$

$$\sigma_{f}^{'} = \exp(\mu_{\ln\sigma_{f}^{'}} + \sigma_{\ln\sigma_{f}^{'}}z_{1})$$

$$b = \mu_{b} + \sigma_{b}z_{3}$$

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

204 of 352

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

206 of 352

Virkler, Hillberry and Goel, "The Statistical Nature of Fatigue Crack Propagation", Journal of Engineering Materials and Technology, Vol. 101, 1979, 148-153

Probabilistic Fatigue
 © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Beware of Correlated Variables $N_{f} = \frac{a_{f}^{1-m/2} - a_{i}^{1-m/2}}{C\Delta S^{m} \pi^{\frac{m}{2}} (1-m/2)}$

 $C \Delta S^m \pi^2 (1-m/2)$

 $\ensuremath{N_{\text{f}}}$ and C are linearly related and should have the same variability, but

$$COV_{N_f} = 0.07$$

 $COV_C = 0.44$

because C and m are correlated.

Probabilistic Fatigue
 © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Probabilistic Fatigue
 © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Probabilistic Fatigue © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Modeling Uncertainty

Analysis Uncertainty $C_U = ?$

The variability in reproducing the original strain life data from the material constants is $C_M \sim 0.44$

COV
$$C = \sqrt{\prod_{i=1}^{n} (1 + C_{X_i}^2)^{a_i^2} - 1}$$

 $1 + C_U^2 = \frac{1 + C_{N_f}^2}{1 + C_M^2}$

C_U = 1.09

90% of the time the analysis is within a factor of 3 ! 99% of the time the analysis is within a factor of 10 !

•Probabilistic Fatigue © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

224 of 352

Variability from Multiple Sources

$$COV \quad C = \sqrt{\prod_{i=1}^{n} \left(1 + C_{X_i}^{2}\right)^{a_i^2} - 1}$$

Suppose we have 4 variables each with a COV = 0.1

The combined variability is COV = 0.29

Suppose we reduce the variability of one of the variables to 0.05

The combined variability is now COV = 0.27

If all of the COV's are the same, it doesn't do any good to reduce only one of them, you must reduce all of them !

Variability from Multiple Sources

$$COV \ C = \sqrt{\prod_{i=1}^{n} \left(1 + C_{X_i}^{2}\right)^{a_i^2} - 1}$$

Suppose we have 3 variables each with a COV = 0.1 and one with COV = 0.4

The combined variability is COV = 0.65

Suppose we reduce the variability of these variables to 0.05

The combined variability is now COV = 0.60

If one of the COV's is large, it doesn't do any good to reduce the others, you must reduce the largest one !

Probabilistic Fatigue
 © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Variability Summary Source COV Service Loading Environment Materials Manufacturing Surface Finish 0.5 Stress 0.3 0.1 Strength 0.1 0.1 _ _ _ **_ _ _ _ _ _ _ _ _** Fatigue Lives 1.0 Analysis Uncertainty 1.0 Fatigue life $\propto \left(\frac{\text{Strength}}{\text{Stress}}\right)^5$

Variability: Every apple on a tree has a different mass. Uncertainty: The variety of the apple is unknown.

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Probabilistic Fatigue

228 of 352

Variability: Multiple samples of the same material Uncertainty: What is the material

Fatigue Strength Coefficient

	Variability	Uncertainty	Combined
All Steels	0.12	0.48	0.75
Structural Steel	0.12	0.12	0.24

Probabilistic Fatigue	© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved
-----------------------	--

232 of 352

At my last seminar everyone hit a golf ball and we recorded the maximum acceleration.

What is the expected variability ?

Probabilistic Fatigue
 © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved


```
Probabilistic Fatigue © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved
```

Probabilistic Aspects of Fatigue

Case Studies

Professor Darrell F. Socie Department of Mechanical and Industrial Engineering

© 2003-2005 Darrell Socie, All Rights Reserved

- Basic Probability and Statistics
- Statistical Techniques
- Analysis Methods
- Characterizing Variability
- Case Studies
- FatigueCalculator.com
- GlyphWorks

Probabilistic Eatique	© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved	236 of 352
*Probabilistic Fatigue	© 2003-2005 Darren Socie, University of himois at Orbana-Champaign, An Rights Reserved	230 01 352

ASTM Symposium on Probabilistic Aspects of Life Prediction Miami Beach, Florida November 6-7, 2002

R. C. McClung, M. P. Enright, H. R. Millwater^{*}, G. R. Leverant, and S. J. Hudak, Jr. Southwest Research

Slides 6 – 27 used with permission of of Craig McClung

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

238 of 352

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

240 of 352

Anomalies in titanium engine disks

Hard Alpha Very rare Can cause failure Not addressed by safe life methods Enhanced life management process Requested by FAA Developed by engine industry Probabilistic damage tolerance methods Supplement to safe life approach

SwRI and engine industry developed DARWIN with FAA funding


```
    Probabilistic Fatigue
```

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Probabilistic Fatigue
 © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Anomaly Distribution

 # of anomalies per volume of material as function of defect size Library of default anomaly distributions for HA (developed by RISC)

Probability of Detection Curves

Define probability of NDE flaw detection as function of flaw size Can specify different PODs for different zones, schedules Built-in POD library or user-defined POD

Random Inspection Time

"Opportunity Inspections" during on-condition maintenance Inspection time modeled with Normal distribution or CDF table

Probabilistic Fatigue © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Identify regions of component with highest risk

- Anomaly size (initial crack size)
- FCG properties (life scatter)
- Mission histories (stress scatter)

Hard Alpha Defects in Titanium

Initial DARWIN focus on Hard Alpha

Small brittle zone in microstructure

Alpha phase stabilized by N accidentally introduced during melting

Cracks initiate quickly

Extensive industry effort to develop HA distribution

Probabilistic Fatigue

Probabilistic Fatigue
 © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Fatigue Design and Reliability ESIS Publication 23

J-J. Thomas, G. Perroud, A. Bignonnet and D. Monnet

PSA Peugeot Citroën

Fatigue design at PSA is done with a probabilistic approach that includes analysis of customer usage, production scatter, definition of the appropriate design loads and an acceptance testing criterion.

Variability in loading has two components, how it is used and how it is driven.

Car Usage Highway, city, fully loaded, empty etc.

Driving Style passive, aggressive etc.

The usage of a car is independent of the owners driving style so that the distributions of car usage and driving style can be obtained separately.

Customer surveys

k	1		$c_k \%$	r _{kl} %
1		Unloaded	27	
	1	Highway		10
	2	Good Road		25
	3	Mountain		40
	4	City		25
2		Half Load	58	
	1	Highway		5
	2	Good Road		30
	3	Mountain		30
	4	City		35
3		Fully Loaded	15	
	1	Highway		15
	2	Good Road		25
	3	Mountain		40
	4	City		20

12 Customer Usage Categories

Probabilistic Fatigue
 © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved
264 of 352

Extensive field testing for each customer usage category produces a large number of histograms.

Let the usage histogram be denoted U_{kl}

Probabilistic Fatigue

^{© 2003-2005} Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Thousands of virtual customers can now be generated by combining customer usage with driving style.

Initial design is done on the basis of a single constant amplitude load, $\rm F_{eq}$

Find a constant amplitude load and number of cycles that will produce the same fatigue damage as the customer operating a car for the design life.

Some Statistics

Z = S - F

Suppose we want a probability of failure of 1 in 50,000

$$P_{f} = 2 \times 10^{-5}$$

$$\Phi^{-1}(P_{f}) = 4.1 = \frac{\mu_{Z}}{\sigma_{Z}} = \frac{\mu_{S} - \mu_{F}}{\sqrt{\sigma_{S}^{2} + \sigma_{F}^{2}}}$$

$$F_{n} = \mu_{S}(1 - \beta \text{ COV}_{S})$$

$$F_{n} = \mu_{F}(1 + \alpha \text{ COV}_{F})$$

$$\Phi^{-1}(P_f) = 4.1 = \frac{\mu_Z}{\sigma_Z} = \frac{\mu_S - \mu_F}{\sqrt{\sigma_S^2 + \sigma_F^2}}$$

$$\Phi^{-1}(\mathsf{P}_{\mathsf{f}}) = \frac{\frac{\mu_{\mathsf{S}}}{\mathsf{F}_{\mathsf{n}}} - \frac{1}{1 + \alpha \operatorname{COV}_{\mathsf{F}}}}{\sqrt{\left(\frac{\mu_{\mathsf{S}}}{\mathsf{F}_{\mathsf{n}}} \operatorname{COV}_{\mathsf{S}}\right)^{2} + \left(\frac{\operatorname{COV}_{\mathsf{F}}}{1 + \alpha \operatorname{COV}_{\mathsf{F}}}\right)^{2}}}$$

Probabilistic Fatigue	© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved
-----------------------	--

Component tests are done with small sample sizes

 $\begin{array}{ll} \text{Confidence limits} & \displaystyle \frac{(N\!-\!1){s_x}^2}{\chi^2_{1\!-\!\alpha,N\!-\!1}} \leq {\sigma_x}^2 \end{array}$

$$\Phi^{-1}(\mathsf{P}_{\mathsf{f}}) = \frac{\frac{\mu_{\mathsf{S}}}{\mathsf{F}_{\mathsf{n}}} - \frac{1}{1 + \alpha \operatorname{COV}_{\mathsf{F}}}}{\sqrt{\left(\frac{\mu_{\mathsf{S}}}{\mathsf{F}_{\mathsf{n}}} \operatorname{COV}_{\mathsf{S}}\right)^{2} \frac{\mathsf{N} - 1}{\chi^{2}_{1-\alpha,\mathsf{N}-1}} + \left(\frac{\operatorname{COV}_{\mathsf{F}}}{1 + \alpha \operatorname{COV}_{\mathsf{F}}}\right)^{2}}}$$

Full scale vehicle simulation done at the end for design final validation

 Probabilistic Fatigue 	© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved	282 of 352

How does this process work?

extrapolate to more users

Probabilistic Fatigue

^{© 2003-2005} Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

gue © 2003-2

Probabilistic Fatigue

- Given a rainflow histogram for a single user, extrapolate to longer times
- Given rainflow histograms for multiple users, extropolate to more users

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Probabilistic Fatigue

- In the first problem the number of cycles is known but the variability is unknown and must be estimated
- In the second problem the variability is known but the number and location of cycles is unknown and must be estimated

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

ue © 2003-2

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Airplane Exceedance

Probabilistic Fatigue
 © 2003-2005 Darr

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

304 of 352

Probabilistic Aspects of Fatigue

www.FatigueCalculator.com

© 2004-2005 Darrell Socie, All Rights Reserved

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

COV and LogNormal Distributions

	Sta	ndard Deviati	on, Inx
001/	1	2	3
COV _X	68.3%	95.4%	99.7%
0.05	1.05	1.11	1.16
0.1	1.10	1.23	1.33
0.25	1.28	1.66	2.04
0.5	1.60	2.64	3.92
1	2.30	5.53	11.1

99.7% of the data is within a factor of \pm 1.33 of the mean for a COV = 0.1

Pile	Fight Street Fight Street Street		_ @ X
4+ 8a	α. • ⇒ • ② ③ ⊴ Δ (S Teep QSearch @Favorites @Media @ 2 @ @ D = D	
Addres	is 💽 http://www.dev.fatigue	alculator.com/probabilistic/br ainillicesp.htm	- (**G
	Home • Contact		
		Probabilistic Strain-Life Analysis	
		alculation. Other data may become necessary as calculation proceeds. This is the probabilities method, is select a distribution and co ariance for each variable. Tou may choose Hone fyou do not with include this variable in the probabilitie analysis. <u>Intemption of Clutithubion Types</u>	efficient of
	Renkine	Loading	
	(1820-1872)	Value Units Destribution Type Contrastic Maximum Im Gaussian Immediate 0.2 Miximum Imm gaussian Immediate 0.2	
	in the second		

Strain Life Analysis - Fatig	eCalculator.com - Microsoft Intern	et Explorer						-
datark - m - (3) (1) (2)	1005 Hep	G B. 0		D				
Address Alter Internet	quecalculator.com/probabilistic/strainil/ee	a hin		5				
	 Material						bottom of page	
	Property Einder							
	Туре	Steel	•	Steel 1	020			
Æ.			Value	Usite	Distribution Type	of Variance	Coefficient	
	Fatigue Strength Coefficient	o.t	883	MPa 💌	Log-Normal 💌	0.1		
	Fatigue Strength Exponent		-0.118	_	None •			
Cit I	Fatigue Ductility Coefficient	- fr	0.16	-	Log-Normal •	0.2	_	
and the second s	Fangue Durniny Exponent		PUALS		INONE •			
Bauschinger	if this section is left blank, values	will be estimated	t.			Confficient	Completion	
(1834-1893)			Value	Unite	Distribution Type	of Variance	Coefficient	
	Elastic Modulus	ε.	506800	MPa -	None			
	Fatigue Limit	El ^s π.	-	MPa 💌	None 💌			
	Cyclic Strength Coefficient	a K	1441	MPa 💌	None 💌			
	Carlie Steple Hondesing							

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 313 of 352 Probabilistic Fatigue

Take = - Accoss of Enclose Chapterer Ne Edit View Favorites Tools Help ← Encl → - ③ ② ③ ▲ ◎ ③ Search ddress http://www.dev.fatiguecalculator.c	■Favorites @Media 🥑 🔄 🎯 🐨 - 🖃	930; ;6640;0. 998; Variable; Deterministic %.20Senak)+4	ty;Probabilistic%20Sensitiv	ity,Median,
	www.fatiguecalo	ulator.com		
Mean Life	6930		6640	0.89
Variable	Deterministic Sensitivity	Probabilistic Sensitivity	Median	co
Losding	-3.53	0.72		-
emer N(0.001, 0.2)	-2.22	0.621	9.92*10*	0.19
e _{min} N(-0.001, 0.2)	-13	0.364	-0.00103	0.18
Material Properties	-6.99	0.621		· · · ·
K'	0.666	0	1440	0
st.	-0.14	0	0.283	0
E	-1.57	0	2.07*105	0
ь	-1.04	0	-0.118	0
¢	-8.02	0	-0.412	0
Sį L(883, 0.1)	0.944	0.132	885	0.091
E _f L(0.16, 0.2)	2.17	0.607	0.16	0.20
Stress Concentrators	-4.43	0.309		
)			0.04

File CR Year Periodic Toda Periodic Sector Absets Periodic Sector Chart Data Chart Data This table shows the desplotted in the graph. Yut may choose to cd and paste it into Attract Broot United in the graph. Yut may choose to cd and paste it into Attract Broot Use table shows the desplotted in the graph. Yut may choose to cd and paste it into Attract Broot Log M2 P.2.0 2.38 -1.00 3.28 -1.00 3.28 -1.00 3.28 -1.00 3.28 -1.00 3.28 -1.00 3.28 -1.00 3.28 -1.00 3.28 -1.00 3.28 -1.00 3.28 -1.00 3.28 -1.00 3.28 -1.00 3.28 -1.00 3.28 -1.00 3.28 -1.00 3.28 -1.00	- P
Address The plane of a stage and a data consider a low of the stage and a sta	• (P)
www.fatiguezaloulatos.com Chart Data This take shows the data for other graph. Yee way shows to call and for other graph. Use the Next button to see the data for other graph. Log Hz p L	
This table shows the data points in the graph. You may choose to not and years in the Difference time. Uper the Next buttom to see the data for other graph. Log HE p 2.98 -2.33 3.28 -1.00 3.28 -1.00 3.28 -1.00	
Chart Data This table shows the data footned in the graph. You may choose to cut and parts it into Minrosoft Excel Use the Next button to see the data for other graphs 1 - 1 for 12 ar (2) - 2.95 - 2.03 - 2.95 - 2.05 - 2.95 - 1.75	
This table shows the data glotteds in the graph. You may choose to car and pasts at its Marcoseft Excel Use the Next botton to see the data for other graphs 1-16° Diart 1 Journal 1 1-09 ME 9 2.95° -2.05 3.20° -1.00 3.35° -1.75	
Use this Next button to see the data for other graphs 1 for Dist x button to 1 cg NE p 2.05 -2.03 3.22 -2.06 3.20 -1.00 3.35 -1.75	
Life Distribution ▲ Log ME p 2.05 -2.33 3.22 -2.06 -2.06 3.29 -1.00 -3.35	
2.95 -2.33 3.22 -2.06 3.29 -1.00 3.39 -1.75	
3.20 -1.00 3.35 -1.75	
3.35 -1.75	
3.35 -1.65	
3.36 -1.56	
3.42 -1.41	
3.43 -1.35 3.43 -1.29	
0.45 -1.23	
3.40 -1.10 3.47 -1.13	
3.47 -1.09	
3.49 -1.00	
3.51 -0.96 3.52 -0.92	
Next Done	

Ten Simula	ations		
	Life	COV	
	6470	0.959	
	6930	0.898	
	6710	0.688	
	6640	0.908	
	6580	0.869	
	6470	0.959	
	7010	0.723	
	6690	0.908	
	6170	0.791	
	6560	0.971	
Mean	6623	0.8674	
COV	0.038	0.114	

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

322 of 352

323 of 352

Correlated Variables le x 🕼 🔄 🖽 🔍 QSearch 👜 Fav * . Material bottom of pag ou may use the Material Finder to look up the proper values for your material but you must specify the distribution you wish to use manually Property Finder U. a . Fatigue St agth Coeffici 0.118 Fatigue St ength Eq Fatigue Durtility Ex ٠ on is left blank, value. eill be lastic Modul Fatigue Limit Cyclic Streng Cyclic Strain I n'= 0.283 S Internet 🛃 🧶 🖬 🔣 🔂 😂 😂 🖉 💋 🧶 🕼 Mcrosoft PowerPoint - [6 ... Strain Life Analysis - F... 1:12 PM Start Probabilistic Fatigue © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Data - Microsoft Internet Explorer File Edit View Pavorites Tools Help				
← Sock + → + (2) (2) (2) (2) Search (4)	jFavorites (2)Media (3) 🕒 - 🎒 🗹 - 📄 🗄		- Real Address M Witness Bir	2M. 4
wares in http://www.devracydecaculator.com	egron (snow ables i will gin colarins - same an weating / who	glooroju, stoj ranabej becerninski, wolobe skowy	,1100404840.00001840	cy)nedian
	www.fatiguecalcula	ator.com		
Mean Life	744)		6640	0.9
Variable	Deterministic Sensitivity	Probabilistic Sensitivity	Median	cc
Loading	-3.53	0.71		
e _{mec} N(0.001, 0.2.)	-2.22	0.613	9.94*10*	0.2
e _{min} N(-0.001, 0.2.)	-13	0.359	-0.00101	0.2
Material Properties	-6.99	0.635		-
к	0.666	0	1440	(
n'	-0.14	0	0.283	0
E	-1.57	0	2.07*105	0
b N(-0.118, .25.), CC=83	-1.04	0.2	-0.119	0.3
c N(-0.412, 23)	-8.02	0.506	-0.41	0.0
SJ L(883, 25)	0.944	0.325	861	0.2
Ej L(0.16, 1.15)	2.17	0.0344	0.16	0.01
Stress Concentrators	-4.43	0.305		
K N(3,0.05)	-4.43	0.305	3	0.0

Data - Microsoft Internet Explorer				_ 0
File Edit View Favorites Tools Help				
← SICL + → + 🔘 🔄 🖓 (Q)Search Address 🗿 http://www.dev.fatiguecakulator.co	Pavorites (PMedia) () ·) () ·)	900E+04::6640:195:Variable:Deterministic%20Sere	Rivity:Probabilistic%205e	ndivity Max =
	www.latiguecalc	ulator.com		
Mean Life	1.900*10 ⁴		6640	155
Variable	Deterministic Sensitivity	Probabilistic Sensitivity	Median	cov
Loading	-3.53	0.263		
enet N(0.001, 0.2)	-2.22	0.227	9.94*10*	0.202
entri N(-0.001, 0.2.)	-1.3	0.133	-0.00101	0.219
Material Properties	-6.99	0.958	1	
K'	0.666	0	1440	0
a'	-0.14	0	0.283	0
Ε	-1.57	0	2.07*105	0
ь N(-0.118, 25)	-1.04	0.132	-0.119	0.26
c N(-0.412, 23)	-8.02	0.941	-0.401	0.25
Sý L(883, 25)	0.944	0.12	861	0.262
EjL(0.16, 1.15)	2.17	0.0127	0.16	0.0106
Stress Concentrators	-4.43	0.113		
		A113	2	0.0472

Probabilistic Fatigue
 © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Street L4 Analysis - Taigan Calabatacanon - Narawali kolomot Raphare Te Edit we Favorts To Help U-Back - → - ② () ① () ③ (Sauch) #Pavorts ③Phoda ③ () ○ - ④ () ○ () ○ () Address ③ () □ () □ () □ () □ () □ () □ () □ ()	<u>ہ۔</u> اور
de Each + → → · · · · · · · · · · · · · · · · ·	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	- 60
Abrauting (and S _{in} or s _n) (MPo v) Mean (and S _{in} or s _n) (MPo v)	_
Material bottom of page	
You may use the Material Pinder by clicking on the Material Property Pinder low to look up the proper values for your material or specify values of the Potential State of the Potential Control of the State of the Potential Control of the State of the S	
amento. E por do noi enter a varançor the Parigon Linit, a alguna varan o 172 24 ento de assente.	
Stoel 💌 Material	
Typeed broken and from the 1400 Frague Links Torongth Sec. 500 MePart Reports 200 Links 1400 Reports 2000 Rep	
if this section is left blank, they will be estimated from the ultimate strength.	
latercept 🕼 S/ - MPa 💌	
Slage D=	
Modifying Factors bottomotree	
Bither specify the modifying factor directly or choose a finish from the drop-down box. If you don't know, a default value of I will be used.	
A contract ratio of Monon a	
Wölker's test machine	
Discontraction of the location	

331 of 352

Results - FatigueCalculator.com - Micr	osoft Internet Diplorer	
File Edit View Favorites Tools Help		18
Address Disto-Thermodex Estimated above	1 alfavortes Grieda (3 C) 3 C 1 C 1	▼ <i>P</i> G
	www.fatiguecalculator.com	
	Stress-Life Calculations Complete.	
The calculated safety factor is:		
	n = 2.2	
We used the following data that you en	ntered:	
	$S_{ij} = 500 \text{ MP s}$	
	K ₁ = 3	
	Smax = -20 MP a	
We calculated the following parameter	is based on default values and values that you entered:	
	h_ = 1	
	k _{eizs} = 1	
	$S_{FL} = 2.0 \text{ MP a}$ kerr = 0.52	
	S _k = 20 MP a	
	S _m = 0 MPa	

🐴 Stress Life Analysis - Fatig	ueCalculator.com - M	icrosoft Internet Ex	plorer				
File Edit View Favorites	Tools Help	utar Milada (1					
Address Thttp://www.dev.fat	iguecalculator.com/stress	sifeexp.htm		30			
F							
			(Ð			5%
			1:	Dalaul	ator		
Home • Contac	t –	a	tique \	alcui	alor		
Home • Contac	t —	<mark>.</mark> a	aigue	alcui	ator		
Home • Contac	t _	Consta	ant An	nplitu	de St	ress-Life	
Home • Contac	t —	Consta	ant An	nplitu	de St	ress-Life	
Home • Contac	t –	Consta	ant An	nplitu Analys	de St sis	ress-Life	
Home • Contac	t —	Consta Consta	ant An	nplitu Analys	de St is	ress-Life	to begin cale
Home • Contact	t	Consta	ant An Ant An encouple, you will be	nplitue Analys	de St is is	ress-Life nt absolutely required data : botton, of page	to begin calc
Home • Contact	t	Consta Consta necessary as calcula iffy either the stresses	ant An errough, you will be ation proceeds.	nplitue Analys asked for more. He	de St de St is ds 10 red represe repute the other.	ress-Life nt absolutely required data : battom of page groue choose to calculate th	to begin cale e stresses, kee
Home • Contact	t	Consta Consta	enough, you will be enough, you will be sor the desired life /	nplitue Analys asked for more. Pre	de St sis ido in red represe repute the other.	ress-Life nt absolutely required data bottons of page &prou choose to calculate the	to begin calc e stresses, lee
Home • Contact	t	Consta Consta receivence: fit is not receivence: as calculat (fr either the stresses	encurst Ann encourse, you will be attion proceeds.	asked for more. Pre	de St bis Ids in red represe repute the other.	ress-Life not absolutely sequered data bettomod gage	to begin cali e stresses, lei
Home • Contact	t	Consta Consta nocknow. If it is not received as calculat (fr either the stresses if either the stresses if and a stresses if either the stresses	enough, you will be enough, you will be ation proceeds.	mplitue Analys askedfor more. Pre sqlety,factor and con MPa MPa	de St is ldo in red representation reprote the other.	ress-Life on about a log required datas buttons of gray grow choose to calculate the	to begin cali

Probabilistic Fatigue © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Probabilistic Aspects of Fatigue

GlyphWorks

Professor Darrell F. Socie Department of Mechanical and Industrial Engineering

© 2005 Darrell Socie, All Rights Reserved

- Introduction
- Basic Probability and Statistics
- Statistical Techniques
- Analysis Methods
- Characterizing Variability
- Case Studies
- FatigueCalculator.com
- GlyphWorks

Brobabiliatia Estigua	© 2002 2005 Darroll Social University of Illingia at Urbana Champaign All Pichta Basanyad	229 of 251
r iobabilistic i atigue	© 2003-2003 Darren Socie, University of himois at Orbana-Champaign, An Rights Reserved	330 01 332

Eile Edit ⊻iew Insert Run	Help
h 🚅 📮 🖌 🖦 🖴 🗡	
×allable Data Available Data ∯- ☐ Histogram ∯- ☐ Multi-column ⊕- ☐ Time series	TSInput1 StatStrain
	0 Test(s) T Display
	HistogramInput1
	D Test(s)

Probabilistic Fatigue

x1			s	tatStrain	
				A	
i) Statistical Analy	sis				
Stan Life Anayos					Median Life: 40980 F
ami	Value	Distribution	Scale Parameter	Correlation Coefficient	Description
Loading					
Scale Factor	100	Normal	.25		Scale Factor
Offset	0	Normal	0.1		Offset
Geometry					
KI	3	Uniform	.05		Fatigue Concentration Factor
Material Data					
E	208000	None			Youngs Modulus
Stp	1000	Log-Normal	0.1		Fatigue strength coefficient
ь	-0.1	None			Fatigue strength exponent
elp	1	None	0.2		Fatigue ductility coefficient
c	-0.5	None			Fatigue ductility exponent
np	0.2	None			Cyclic strain hardening exponent
Кр	1200	LogNomal	0.1		Cyclic strength coefficient
Analysis Properties					
NumCases	10				Number of simulations to run
Damage Sum	1	Loo Nom	5		Uncertainty

^{© 2003-2005} Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

³⁴⁰ of 352

Probabilistic Sensitivity, Channel 6

StatOutput.xls (continued)

Channel # 6

Life Distribution

Sensitivity

1

Total Channels

		Variable	Probabilistic	Deterministic
NumCases	11	Load History Variables	0.89	-5.42
Median	45634	ScaleFactor	0.89	-5.42
COV	1.91	Offset	0.00	0.00
		Stress Concentrators	0.05	-5.51
Probability (%)	Life	Kf	0.05	-5.51
99	817179	Material Properties	0.25	-14.54
90	223648	E	0.00	-4.37
50	45634	Sfp	0.23	3.42
10	9311	b	0.00	-4.39
1	2548	efp	0.00	1.42
		С	0.00	-9.86
		np	0.00	-2.32
		Кр	0.10	1.56
		Analysis Variables	0.37	1.00
		Uncertainty	0.37	1.00

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

		Inputs		Outputs		
			Scale		Scale	
Variable	Distribution	Value	Parameter	Value	Parameter	
ScaleFactor	Normal	100	0.25	103	0.18	
Offset	Normal	0	0.10	-0.01	0.08	
Kf	Uniform	3	0.05	3.0	0.04	
E	None	208000	0.00	208000	0.00	
Sfp	Log-Normal	1000	0.10	1054	0.11	
b	None	-0.1	0.00	-0.10	0.00	
efp	None	1	0.20	1.0	0.00	
С	None	-0.5	0.00	-0.50	0.00	
np	None	0.2	0.00	0.20	0.00	
Kp	Log-Normal	1200	0.10	1194	0.10	
Uncertainty	Log-Normal	1	0.50	0.93	0.48	

StaStess
StaStess
StarSteess
StaStress
····· 1984 ······
Median Life: 2.368E+08 Repeats
Scale Parameter Correlation Coefficient Description
0.1 0 Scale Factor
0.1 Officet
0.05 0 Fatigue Concentration Factor
0.1 Ultimate Tensile Strength
0.1 0 Stress Bange Intercept
0 Main S-N Slope
Number of simulations to run
0.1 0 Analysis Uncertainty
0.1 0.1 0.0 0.1 0.1 0.1 0.1

Probabilistic Fatigue

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Directory gs\d-socie\My Doc	cuments\Seminars\Probabilist	ic\Motorhome 💌 💼	Browse
Search for files matching			
	@ File		Scan Now
File Type		()	
All supported files	•	\sim	Ston Scan
Recurse sub-folders	_		
Available tests	1 test selected	Г	Expand Channe
Test name 🔺 🕨	H Test name	# Chans Extension	File type
MH_pass1_acc	MH_pass1_acc	1 cyh	nCode histogra
MH_pass1_accdext >	MH_pass2_acc	1 cyh	nCode histogra
MH_pass1_accdext MH_pass2_acc >>> MH_pass3_acc <>> MH_pass4_acc <	MH_pass3_acc	1 cyh	nCode histogra
Extrapolation Multiplier (More t	han 0) 10	Advanced	- I
Number of Simulations 1			

```
    Probabilistic Fatigue
```

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved


```
    Probabilistic Fatigue
```

© 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Percentile Extrapolation

Rercentile extrapolation				? >				
Test Selection								
Directory gs\d-socie\My Documents	Browse							
Search for files matching								
	@ File							
,								
			\square	·				
All supported hies	•			Stop Scan				
Recurse sub-folders								
Available tests 1	Available tests 10 tests selected 🗖 I							
Test name 🔺 🕨 📢	Test name	# Chans	Extension	File type				
MH_pass4_acc	MH_pass1_acc	1	cyh	nCode histog				
MH_pass5_acc >	MH_pass2_acc	1	cyh	nCode histog				
MH_pass6_acc	MH_pass3_acc	1	cyh	nCode histog				
MH_pass7_acc >>	MH_pass4_acc	1	cyh	nCode histog				
MH_pass8_acc	MH_pass5_acc	1	cyh	nCode histog				
MH_pass9_acc <	MH_pass6_acc	1	cyh	nCode histog				
MH_pass10_acc	MH_pass7_acc	1	cyh	nCode histog 🚽				
	•	1						
Extrapolation Factor (0.5 - 1, but not 1) 0.99	Advanced						
Number of Simulations 1								
Cancel < Back	<u>N</u> ext>		<u>F</u> inish	Help				

Probabilistic Aspects of Fatigue

