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Size Scale for Studying Fatigue

Atoms Dislocations Crystals Specimens Structures

1010 108 10 104 102 100 102
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Understand the physics on this scale

- >

Model the physics on this scale

——-

Use the models on this scale
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i The Fatigue Process

B Crack nucleation

B Small crack growth in an elastic-plastic
stress field

B Macroscopic crack growth in a nominally
elastic stress field

H Final fracture

Fatigue, How and Why © 2004-2013 Darrell Socie, All Rights Reserved 3of 141



i Mechanisms Crack Nucleation

Nucleation in Slip Bands inside Grain
Nucleation at Grain Boundaries
Nucleation at Inclusions
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Cyclic deformation leads
to the development of slip
bands and fatigue cracks

N = 10,000 N = 40,000 N; = 170,000
Ewing, J.A. and Humfrey, J.C. “The fracture of metals under repeated alterations of stress”,
Philosophical Transactions of the Royal Society, Vol. A200, 1903, 241-250

Fatigue, How and Why © 2004-2013 Darrell Socie, All Rights Reserved 5of 141




Crack Nucleation
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Slip Band in Copper

Polak, J. Cyclic Plasticity and Low Cycle Fatigue Life of Metals, Elsevier, 1991
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Fatigue, How and Why
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Slip Bands

Ma, B-T and Laird C. “Overview of fatigue behavior in copper sinle crystals —II Population, size, distribution and growth
Kinetics of stage | cracks for tests at constant strain amplitude”, Acta Metallurgica, Vol 37, 1989, 337-348
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Crack at Particle

Material: BS L65 Aluminum

Loading: 63 ksi, R=0 for
500,000+ cycles, followed by 68
ksi, R=0 to failure. Cracks found

during 68 ksi loading.

X 1000

S. Pearson, “Initiation of Fatigue Cracks in Commercial Aluminum Alloys and the Subsequent Propagation
of Very Short Cracks,” RAE TR 72236, Dec 1972.
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2219-T851 Cracked Particle

James & Morris, ASTM STP 811 Fatigue Mechanisms: Advances in Quantitative Measurement of Physical
Damage, pp. 46-70, 1983.
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Crack at Bonded Particle

Material: BS L65 Aluminum

Loading: 63 ksi, R=0 for
500,000+ cycles, followed by 68
ksi, R=0 to failure. Cracks found

during 68 ksi loading.

X 1600

S. Pearson, “Initiation of Fatigue Cracks in Commercial Aluminum Alloys and the Subsequent Propagation
of Very Short Cracks,” RAE TR 72236, Dec 1972.
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/075-T6 Cracking at Inclusion
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Crack Initiation at Inclusions

Langford and Kusenberger, “Initiation of Fatigue Cracks in 4340 Steel”, Metallurgical Transactions, Vol 4, 1977, 553-559
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Subsurface Crack Initiation

P T T

Y. Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, 2002
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Fatigue Limit and Strength Correlation
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From Forrest, Fatigue of Metals, Pergamon Press, London, 1962
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i Crack Nucleation Summary

B Highly localized plastic deformation
B Surface phenomena
M Stochastic process
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Surface Damage

o

20-25 austenitic steel in symmetrical push-pull fatigue
(20°C, Ag,/2=10.4%) : short cracks on the surface and in the bulk

From Jacques Stolarz, Ecole Nationale Superieure des Mines
Presented at LCF 5 in Berlin, 2003
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Stage | and Stage ||

loading direction
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Stage | Crack Growth

S

Stage | crack is strongly affected by slip

characteristics, microstructure

L near - tip plastic zone dimensions, stress level, extent of near
tip plasticity

[] individual grain
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Small Cracks at Notches

notch plastic zone

notch stress field

—

crack tip plastic zone

\

Crack growth controlled by the notch plastic strains
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Small Crack Growth
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Crack Length Observations
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Crack - Microstructure Interactions
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Crack Length, mm
Akiniwa, Y., Tanaka, K., and Matsui, E.,”Statistical Characteristics of Propagation of Small Fatigue Cracks in Smooth
Specimens of Aluminum Alloy 2024-T3, Materials Science and Engineering, Vol. A104, 1988, 105-115
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Strain-Life Data
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Reversals, 2N,

Most of the life is spent in microcrack growth in the
plastic strain dominated region
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i Stage Il Crack Growth

Y
7

| N\

Locally, the crack grows in shear
Macroscopically it grows in tension
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Long Crack Growth

Plastic zone size is much larger than the material
microstructure so that the microstructure does not
play such an important role.
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Crack Growth Rates of Metals
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Material strength does not play a major role in fatigue crack growth
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Stresses Around a Crack
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Stresses Around a Crack (continued)

)
/

Minimum Load

” cyclic plastic zone
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Crack Closure
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Crack Opening Load

Damaging portion of loading history
A

\/
Nondamaging portion of loading history
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Mode |, Mode Il, and Mode Il

Mode | Mode II Mode Il
opening in-plane shear out-of-plane shear
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Mode | Growth

crack growth directon ——»
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Mode Il Growth

<€«—— crack growth direction
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1045 Steel - Tension
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1045 Steel - Torsion
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i Things Worth Remembering

M Fatigue is a localized process involving the
nucleation and growth of cracks to failure.

B Fatigue is caused by localized plastic
deformation.

B Most of the fatigue life is consumed growing
microcracks in the finite life region

B Crack nucleation is dominate at long lives.
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i Fatigue, How and Why

B Physics of Fatigue
® Material Properties
B Similitude

M Fatigue Calculator
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i Characterization

B Stress Life Curve
® Fatigue Limit
B Strain Life Curve
B Cyclic Stress Strain Curve

B Crack Growth Curve
B Threshold Stress Intensity
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Bending Fatigue

stress amplitude
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Bending stress:
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SN Curve

Stress Amplitude, MPa

Testing time
@ 30 Hz

Fatigue, How and Why
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Fatigue Strength

Fatigue Life
Alloy 105 108 107 108 109
2014-T4 290 235 186 152 138
2024-T4 297 214 166 145 138
6061-T6 186 152 117 104 90
7075-T6 276 200 166 152 145

Fatigue, How and Why
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6061-T6 Aluminum Test Data
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Sharpe et. al. Fatigue Design of Aluminum Components and Structures , 1996
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SN Curve for Steel
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The fatigue limit is usually only found in steel laboratory specimens
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Very High Cycle Fatigue of Steel
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Fatigue Damage

Fatigue, How and Why
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Fatigue Limit Strength Correlation
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From Forrest, Fatigue of Metals, Pergamon Press, London, 1962
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Fatigue Limit Strength Correlation

Fatigue, How and Why

Fatigue limit (MPa)

Hardness, R,
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SN Materials Data
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Strain Controlled Testing
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Cyclic Hardening / Softening

2 3rd
1st reversal

Futl ~
(a)Aeur_yo:a&v;;:Ied {b) Partially annealed

{c} Cold worked
Ae = 0.0099
2N; = 2000 reversals

Ae =0.0078

2N, = 8060 reversals 2Ny = 4400 reversals
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i Stable Hysteresis Loop

Hysteresis loop
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Strain-Life Data o —¢
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During cyclic deformation, the material deforms on a path

described by the cyclic stress strain curve
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Cyclic Stress Strain Curve
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Fatigue, How and Why
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Strain-Life Data Ae - 2N;
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Elastic and Plastic Strain-Life Data
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Strain-Life Curve
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Transition Fatigue Life
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From Dowling, Mechanical Behavior of Materials, 1999
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eN Materials Data
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i Crack Growth Testing
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i Stress Concentration of a Crack

P
~
|< > >| Ky =1+2 \E
«— a— p
K~ 2000

for a crack

a~ 10-3 Olocal = 2000 cyapplied

p~10-°

Traditional material properties like tensile strength
are not very useful for cracked structures
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i Stress Intensity Factor

o K=o0c.ma

K characterizes the magnitude of the
stresses, strains, and displacements in the
neighborhood of a crack tip

|.f.| Two cracks with the same K will have
2a the same behavior
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i Crack Growth Measurements

LI > o

Crack size

Cycles
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Crack Growth Data
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i Threshold Region

AK.,>Ac+/ma f(ij

T A A W
threshold stress intensity T
flaw shape
flaw size

operating stresses
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Threshold Stress Intensity

Fatigue, How and Why

AK ., Stress Intensity Threshold, ksi/in
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i Non-propagating Crack Sizes

Small cracks are frequently semielliptical surface cracks
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i Non-propagating Crack Sizes
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Stable Crack Growth
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Crack Growth Data

106 -

Crack Growth Rate, m/cycle
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Barsom, “Fatigue Crack Propagation in Steels of Various Yield Strengths”

Journal of Engineering for Industry, Trans. ASME, Series B, Vol. 93, No. 4, 1971, 1190-1196
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Aluminum Crack Growth Rate Data
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Sharp, Nordmark and Menzemer, Fatigue Design of Aluminum Components and Structures, 1996
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Crack Growth Data
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Virkler, Hillberry and Goel, “The Statistical Nature of Fatigue Crack Propagation”, Journal of Engineering Materials
and Technology, Vol. 101, 1979, 148-153
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i Things Worth Remembering

Method Physics Size
Stress-Life Crack Nucleation 0.01 mm
Strain-Life Microcrack Growth 0.1-1mm

Crack Growth Macrocrack Growth >1mm
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Fatigue Analysis

Material
Data

Fatigue
Life Estimate

Component -~ Analysis ——
Geometry

?
Service

Loading
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Fatigue

i The Similitude Concept

Why Fatigue Modeling Works !
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i What is the Similitude Concept

The “Similitude Concept” allows engineers to
relate the behavior of small-scale cyclic
material test specimens, defined under
carefully controlled conditions, to the likely
performance of real structures subjected to
variable amplitude fatigue loads under either
simulated or actual service conditions.
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i Fatigue Analysis Techniques

Stress - Life

BS 7608, Eurocode 3
Strain - Life

Crack Growth
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i Life Estimation

Method Physics
Stress-Life Crack Nucleation

BS 7608 Crack Growth
Strain-Life Microcrack Growth

Crack Growth Macrocrack Growth

Size
0.01 mm
1-10 mm
0.1-1mm

> 1mm
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Stress-Life Fatigue Modeling

| I— I

Fixed
End
/] T

P
< 10000
o
=
2 1000 The Similitude Concept states that if the
z ) instantaneous loads applied to the ‘test’
ﬁ structure (wing spar, say) and the test
® 100 specimen are the same, then the response

10° 10* 102 10% 104 10° 108 107 . .
Cycles in each case will also be the same and can
be described by the material’'s S-N curve.
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i Fatigue Analysis: Stress-Life

Material | SN curve
Data Ka, Ks, ...

Fatigue
Life Estimate

Geometry
Service /

Loading ‘AS  Sm ‘

Component Analysis
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Stress-Life

B Major Assumptions:
B Most of the life iIs consumed nucleating cracks
M Elastic deformation

B Nominal stresses and material strength control
fatigue life

B Accurate determination of K, for each geometry
and material
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Stress-Life

B Advantages:

B Changes in material and geometry can easily be
evaluated

B Large empirical database for steel with standard
notch shapes
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Stress-Life

M Limitations:
B Does not account for notch root plasticity
B Mean stress effects are often in error
B Requires empirical K;for good results
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BS 7608 Fatigue Modeling

The Similitude Concept states that if the
1000y instantaneous loads applied to the ‘test’
structure (welded beam on a bulldozer, say)
and the test specimen (standard fillet weld)
are the same, then the response in each
case will also be the same and can be
described by one of the standard BS 7608
Weld Classification S-N curves.

=
o

Stress Range, MPa
=
o
o

8

o

10° 108 107 1
Cycles
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i Weld Classifications
D é@ | @
F2$ G
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i Fatigue Analysis: BS 7608

Material ‘Weld SN curve ‘

Data \
Component . Fatigue
Geometry ‘Class ‘ Analysis Life Estimate

e
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BS 7608

B Major Assumptions:
B Crack growth dominates fatigue life

B Complex weld geometries can be described by a
standard classification

M Results independent of material and mean stress
for structural steels
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BS 7608

B Advantages:
B Manufacturing effects are directly included
M Large empirical database exists
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BS 7608

B Limitations:

M Difficult to determine weld class for complex
shapes

B No benefit for improving manufacturing process
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Strain-Life Fatigue Modeling

The Similitude Concept states that if the
instantaneous strains applied to the ‘test’
structure (vehicle suspension, say) and the
test specimen are the same, then the
response in each case will also be the same
and can be described by the material's e-N
wsb o~ curve. Due account can also be made for

w0 10t 100 100 106 108 100 107 SIF@SS  concentrations, variable amplitude

Reversals, 2N; IOading EtC.

Le
0.1
0.01f

0.001[

Strain Amplitude

10*[
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i Fatigue Analysis: Strain-Life

Material | &N curve
Data o¢ Curve

Fatigue
Life Estimate

Geometry
Service /

Loading ‘AS  Sm ‘

Component Analysis
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Strain-Life

B Major Assumptions:

M | ocal stresses and strains control fatigue
behavior

M Plasticity around stress concentrations
B Accurate determination of K;

Fatigue, How and Why © 2004-2013 Darrell Socie, All Rights Reserved 95 of 141



Strain-Life

B Advantages:
M Plasticity effects
B Mean stress effects
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Strain-Life

M Limitations:
B Requires empirical K;

M Long life situations where surface finish and
processing variables are important
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Crack Growth Fatigue Modeling

106 E
107 3
108 E

10°E

lO—lO E

1011 E

Crack Growth Rate, m/cycle

1012 —
1 10
AK,MPa/m

Fatigue, How and Why

100

The Similitude  Concept
states that if the stress
intensity (K) at the tip of a
crack in the ‘test’ structure
(welded connection on an oil
platform leg, say) and the
test specimen are the same,
then the crack growth
response in each case will
also be the same and can be
described by the Paris
relationship. Account can
also be made for local
chemical environment, If
necessary.
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i Fatigue Analysis: Crack Growth

Material [ga/dn curve |

Data \

Component . Fatigue
Geometry Analysis Life Estimate
Service /
Loading ‘AS  Sm ‘
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Crack Growth

B Major Assumptions:
B Nominal stress and crack size control fatigue life
B Accurate determination of initial crack size
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Crack Growth

B Advantage:
B Only method to directly deal with cracks
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Crack Growth

B Limitations:
B Complex sequence effects
B Accurate determination of initial crack size
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i Choose the Right Model

B Similitude
M Failure mechanism
M Size scale
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i Design Philosophy

B Safe Life
B Damage Tolerant
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Safe Life

500 1

N
o
o

Stress Amplitude, MPa

99 90 50 10 1
Percent Survival

10*

10°

106 107 108 10°
Fatigue Life

Choose an appropriate risk and replace critical parts
after some specified interval
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Damage Tolerant

Inspection

Crack size

‘ | Safe Operating Life

»
»

Cycles
Inspect for cracks larger than a, and repair
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i Inspection

A Boeing 777 costs $250,000,000
A new car costs $25,000

For every $1 spent inspecting and maintaining a
B 777 you can spend only 0.01¢ on a car
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i Things Worth Remembering

B Questions to ask
B Will a crack nucleate ?
® Will a crack grow ?
® How fast will it grow ?

B Similitude
B Failure mechanism
M Size Scale
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i Fatigue, How and Why

B Physics of Fatigue
® Material Properties
B Similitude
M eFatigue

Fatigue, How and Why © 2004-2013 Darrell Socie, All Rights Reserved 109 of 141






i Some Observations

Most fatigue failures are not the result of an
expert using the wrong analysis etc.

Most fatigue failures are a result of a non-
expert not considering fatigue because it is
too complicated, not enough data etc.

Fatigue will no longer be taught in the major
research universities as they focus on new
science.
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i Prof Yukitaka Murakami

Science In the Sunlight
Science In the Shade
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Science In the Sunlight
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cience In the Shade

mf_:?i [ e
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i A Common Viewpoint (controversial)

Fatigue Is reasonably well understood, major
problems are solved and current research is
applications driven towards investigating special
cases and improving the accuracy of our
evaluations.

Fatigue Is assessment is just like finite element
analysis, buy some software and make a color plot.
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Fatigue Calculators

There Is a need for some fatigue analysis
tools that take only a few minutes to learn
SO non-experts can reliably conduct a
fatigue assessment.
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efFatigue Fatigue Calculator Seminars Contributors

Fatigue Calculator Boigue G

Fatigue failures are always a consideration for any structure that is dynamically or cyclically loaded. The effective use of the appropriate
fatigue technology and analysis is an essential part of assuring the fatigue resistance and durability of all mechanical components.

Most fatigue technologies and fatigue analysis software have only been used by experts with costs to match. No longer. Designed and
supported by the fatigue group at the University of llinois, the Fatigue Calculator portion of the eFatigue website contains all of the
technologies and tools needed for accurate fatigue assessments with an interface that is easy for the non-expert to navigate. With a Fatigue
Calculator any engineer can quickly and easily conduct a fatigue or durability analysis. There are no logins or charges needed to use the
Fatigue Calculator portion of the eFatigue website.

Databases for material properties, stress concentration factors, and stress intensity factors are included with the various Fatigue Calculators.
Learn by Example and a description of the methods and input parameters are provided.

Fatigue analysis methods are based on stress-life, strain-life or crack growth. Fatigue technologies are applications of the methods for
specific kinds of problems or materials.

New fatigue technologies and databases are continuously being developed and added to the Fatigue Calculator and eFatigue.

What is eFatigue?

eFatigue is the full featured version of the FatigueCalculator with the ability to store personal and corporate databases for materials and
loadings. Results from any analysis, including both plots and tables are be stored for later retrieval. In addition, Fatigue Analyzers for more
computationally intensive problems such as directly processing finite element models and variable amplitude loadings from large data files
are included in eFatigue. With an appropriate login, users also have access to proprietary analysis procedures and databases. eFatigue will
be available to the general public in a few months.
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Constant Amplitude Home

There are three primary methods for estimating the fatigue resistance of components and structures. Stress-Life analysis assumes that the
stresses always remain elastic even at the stress concentrators. Most of the live is consumed nucleating small microcracks. This is typical for
long life situations (millions of cycles) where the fatigue resistance is controlled by nominal stresses and material strength. Strain-Life is used for
situations where plastic deformation occurs around the stress concentrations. An example would be in a structure that has one major load cycle
every day. Both stress-life and strain-life provide an estimate of how long it will take to form a crack about 1mm long. Crack growth analysis is
then used to estimate how long it will take to grow a crack to final fracture. Fatigue of welds requires special considerations because of their
complex shape and loading.

m

This section provides analysis for simple constant amplitude loading for all of the methods. It is typically found in power transmission
applications such as shafts, gears etc. It is frequently used in the early stages of design to set the overall stress levels and to select appropriate
materials. Many design and testing specifications are written in terms of constant amplitude loading.

Finders are provided to obtain the necessary input information for material properties and stress concentration or stress intensity factors.

Fatigue Calculators

7’7 Stress-Life
Use this method for long life situations where the strength of the material and the nominal stress control the fatigue life.

#+ Strain-Life
This method is used for finite fatigue lives where plasticity around stress concentrations is important.

= | Crack Growth
Use this method to determine how long it will take a crack to grow to a critical size.

& 55 7608 Welds
Complex weld shapes and residual stresses require special fatigue considerations.
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Stress Concentration Factor Finder

» Rectangular Bars

'YRounds and Shafts

| Round Shaft with a Single Fillet |

Round Shaft with Double Fillets ]

Round Shaft with Groove ]

Round Bar with IU-shaped Groove ]

Round Bar with V-shaped Groove ]

Round Shaft with Semi-Circular Keyway ]

Round Shaft with a Transverse Hole ]
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Round Shaft with Groove

Bending ~ Torsion | Select Different Geometry |

Variables

Net Section Stress -
D 10 mm -
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Results

Ki=2.16
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Constant Am

plitude Material Property Finder

OStress-Life
® Strain-Life
OCrack Growth

Filter by owner:
Show All

Constant Amplitude

* | Update Filter

Aluminum 5454, Forged, Su=334.0

Technology Constant Amplitude Strain-Life

Owner public
Material Type aluminum
Material Alloy 5454
Material Process Forged
Elastic Modulus E = 69000 MPa

Aluminum 1100, Su=110.0

Aluminum 2014-T6, Su=510.0
Aluminum 2024-T3, Su=490.0
Aluminum 2024-T4, Su=476.0
Aluminum 5083-0, BHN=93

Aluminum 2014-T6, Hand Forged. Su=4830 [ |

Aluminum 5083-H12, Su=385.0
Aluminum 51583-0, Weld metal, BEHMN=32

Aluminum 5454, Forged. Su=334 0
Aluminum 5456-H311, Su=400.0 hd

Ultimate Strength S, = 334 MPa
Fatigue Strength Coefficient of = 554 MPa
Fatigue Strength Exponent b= -0.089
Fatigue Ductility Coefficient &' = 0.31
Fatigue Ductility Exponent c= -0.62
Cyclic Strength Coefficient K'= 373 MPa

| Add Strain-Life Material |

Cyclic Strain Hardening Exponent n'= 0.047
Material Reference SAE Paper 840120 Wong
| Edit This Material || Delete This Material || Material Property Estimator |
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Constant Amplitude Strain-Life Analysis i

Although most engineering structures and components are designed such that the nominal stresses
remain elastic, local stress concentrations often cause plastic strains to develop in regions around

AS them. The strain-life method assumes that the smooth specimens tested in strain control simulate
P fatigue damage in local region around the stress concentration.

m

Use of the strain-life analysis method is limited to situations where crack nucleation and the growth
of small microcracks consumes the majority of the service life.

AS

Enter as much data as you know. If it is not enough, you will be asked for more. Sections with a light blue background represent the minimurm
required data to begin calculations. Other data may become necessary as calculation proceeds. Pressing the ‘£ button provides help in the
form of an equation or default information for a parameter.

Experienced user mode is off. Turm experienced user mode on for a more concise form.
[ Experienced User On l

Click on the button below to learn by example:
[ Learn By Example ]

Loading

Loads can be entered as either the maximum and minimum values or as the stress range and mean stress.

Stresses or strains entered may be elastic-plastic. You can use elastic finite element or other elastic calculations as input by selecting (elastic)
units for stress or strain. Examples include input from elastic finite element models and strength of materials calculations such as bending
beams. In this case, a plasticity correction will be made to the input stresses or strains before computing the fatigue life using Neuber's Rule.
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Constant Amplitude Strain-Life Analysis

[ Experienced User Off ]

* | Load Template

Loading

Loading Units ‘mm/mm -
Maximum ‘f Smax Of Bmax = mm/mm
Minimum ‘£ Smin OF €min = mm/mm
OR

Range AS or Ae = mm/mm
Mean 'f Smorem= mm/mm
Material

[ Material Property Finder ] [ Material Property Estimator

Type steel

Fatigue Strength Coefficient af = MPa -
Fatigue Strength Exponent =

Fatigue Ductility Coefficient & =

Fatigue Ductility Exponent =

Elastic Modulus ‘f = MPa ~
Fatigue Limit £ Sk = MPa -
Fatigue Limit Reversals 'f 2NFL = Reversals
Cyclic Strength Coefficient 'f K'= MPa -
Cyclic Strain Hardening Exponent £ n =
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Calculate

[ Calculate Life ] f [ Clear Form ]

Save these results in your home directory:

CAStrainLife 2010_01_25_124816

Name may only contain letters, numbers, underscores, dashes, periods and spaces.

Analysis Results
Nf= 58655 cycles

Hysteresis Loop

Stress, MPa

300
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130
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=100
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0.0005 0.001

0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

Strain
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o drop 1
drop 2
drop 3
 drop4
 drop5
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| AddRow || Add Column || Validate |

Save data as ascii file in your home directory:

Enter at least two points. You may paste tab and newline delimited text (such as would be copied from a
spreadsheet) into a box, and it will be expanded out automatically.

-

Mame may only contain letters, numbers, underscores,

Save
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Load Scaling

Loading Units
Channel Select
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Zero Offset
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L [l SAE_test.txt
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A Analysis Results
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Working With Files

Upload a file here:

[ Browse_ " Upload File ]
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Validate that checked file is a Finite Element Model and show summary:
| validate Finite Element Model |
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| Validate LoadingFile |

Sat Mar 26 2009 10:21:35

Fri Feb 20 2009 14:49:17
Tue Feb 3 2009 10:20:30
Wed Feb 18 2009 06:51:20
Wed Jan 6 2010 06:26:39
Maon Dec 7 2009 10:44:56
Fri Sep 18 2009 07:09:18
Sat Mar 28 2009 10:21:31
Sat Mar 28 2009 10:21:31

© 2004-2013 Darrell Socie, All Rights Reserved



£F eFatigue - Variable Amplitude Strain-... | +

""‘Dﬂ 4-:

Cralx gue
a trusted source fo

)

rjatigue analysis

You are signed in a:
darrell (Sign Out

Home

Getting Started
Contact Us
Glossary

Staff

darrell
Files
Analyses
Preferences
Groups
Users

Fatigue Technologies
Constant Amplitude
Wariable Amplitude
Finite Element Model
Multiaxaal
Probabilistic
High Temperature

Variable Amplitude

Fatigue Analyzers
Stress-Life
Strain-Life
Crack Growth
BS 7608 Welds

Finders
Stress Concentration
Stress Intensity
BS 7608 Weld Classification

Materials
Stress-Life Materials
Strain-Life Materials
Crack Growth Materials

Technical Background
Supported File Types
Rainflow Counting
Damage Summation
Stress-Life Background
Strain-Life Background
Crack Growth Background
BS 7608 Welds Background

Fatigue, How and Why

Variable Amplitude Strain-Life Analysis

Analysis

[ Analyze ] ’ Clear Form ]

Viewing analysis VAStrainLife Example_6 owned by darrell

Analysis Results
NF= 1391

Hysteresis Loop
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Files
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Users _ )
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Fatigue Life
Deterministic Probabilistic
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Loading 0.83
AS or Ae MN(0.00100 mm/mm,0.200) -3.55 082 0.00100 0.201
Smorem N(0.00050 mm/mm,0.200) -0.52 0.12 0.00050 0.197
Material Properties 0.49
K' 1441 MPa 0.79 0.00 1441 0.000
n' 0.283 -1.32 0.00 0.283 0.000
E 206800 MPa 232 0.00 206800 0.000
-0.118 205 0.00 0118 0.000
0412 -8.87 0.00 0412 0.000
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Stress Concentrators 0.26
K MN(3.00,0.05) 465 0.26 3.00 0.049
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Getting Started
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Glossary )
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Fatigue Technologies
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Finite Element Model Name Aluminum 7075-T651, Su=580.0
Multiaxial Type aluminum -
Probabilistic . .
High Temperature Fatigue Strength Coefficient of = 1231 MPa -
Fatigue Strength Exponent b=-0122
Multiaxial . L . _
T o (B AT Fatigue Ductility Coefficient & = 0.263
Stress-L ife Fatigue Ductility Exponent c= -0.806
Strain-Life .
Materials Elastic Modulus E = 70000 MPa ~
Stress-Life Materials : it (F - -
e, Fatigue Limit SA MPa 158 MPa
Technical Background Fatigue Limit Reversals ‘£ 2NFL = Reversals 20000000
e Cyclic Strength Coefficient 3 K'= 852 MPa -
Cyclic Strain Hardening Exponent 'f n'= 0074
Shear
Shear Fatigue Strength Coefficient T = MPa ~ 711 MPa
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Shear Fatigue Ducltility Coefficient Wi = MPa ~ 0.46
Shear Fatigue Ductility Exponent Cy= -0.806
Monproportional Hardening Coefficient anp = 0
Poisson's Ratio V= 03
Shear Modulus G= MPa - 269E+04 MPa
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Calculate

[ Calculate Life H Clear Form

Analysis Results

Nf (Fatemi_Socie) = 1.858e+03
Nf (swT) =2.127e+03
Nf (Brown-Miller) = 1.459e+03
Nf (Liu Mode ) = 2.109e+03
Nf (Liu Mode 1I) = 2.454e+03
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Home
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Staff

Fatigue Technologies
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Finite Element Model

Fatigue Analyzers
Stress-Life
Strain-Life

Materials
Stress-Life Materials
Strain-Life Materials

Technical Background
Supported File Types
Stress-Life Background
Strain-Life Background

Finite Element Models Home

There are two primary methods for estimating the fatigue resistance of components and structures from Finite Element Model results. Stress-Life
analysis assumes that the stresses always remain elastic even at the stress concentrators. Most of the life is consumed nucleating small
microcracks. This is typical for long life situations (millions of cycles) where the fatigue resistance is controlled by nominal stresses and material
strength. Strain-Life is used for situations where plastic deformation occurs around the stress concentrations. An example would be in a structure that
has one major load cycle every day. Both stress-life and strain-life pravide an estimate of how long it will take to form a crack about 1mm long. We
suggest that you first review the constant amplitude section if you are unfamiliar with the basic methods and terminology.

This section provides analytical tools for processing FEM data for both of the methods. Fatigue analysis from a finite element model is essentially
the same as constant or variable amplitude fatigue analysis with one major difference. Multiaxial stresses must be considered in the fatigue
assessment. In ductile materials, multiaxial stresses considerations are particularly important because shear stresses, not principle stresses, are
responsible for the nucleation and initial growth of fatigue cracks.

Both ANSYS * rst file format and ABAQUS * fil formats are currently supported. Results from the fatigue analysis are summarized in a series of bar
charis and also returned in a *.rst or *fil file for plotting.

Finders are provided to obtain the necessary input information for material properties.

Fatigue Analyzers

7’] Stress-Life
Use this method for long life situations where the strength of the material and the nominal stress control the fatigue life.

# Strain-Life
This method is used for finite fatigue lives where plasticity around stress concentrations is important.

Finders

Material Properties
Find material properties for fatigue analysis.

Technical Background

Supported File Types

Fatigue, How and Why
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Finite Element Model Stress-Life Analysis
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Calculate

[ Clear Results (Keep Input) ] ’ Clear Form ]

ST

Viewing analysis FEMStressLife_2008_11_13_032850
Analysis Results
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NODAL SOLUTION

STEP=1

SUB =1

TIME=1

SX (AVG)
RSYS=0

SMN =5.791
SMKX =12

I
5.791 7.171 8.551 .93 11.31
6.481 7.861 9.241 10.62 12

www.efatigue.com - LOG1O({LIFE) SX=Goodman; SY=Findley;

Fatigue, How and Why © 2004-2013 Darrell Socie, All Rights Reserved 137 of 141



| &F eFatigue - Thermo Mechanical Analysis |

"‘I?n-l-:

l a trusted source for fatigue analysis

MName:
Password:

Sign Up or | Signin

Home

Getting Started
Contact Us
Glossary

Staff

Fatigue Technologies
Constant Amplitude
Variable Amplitude
Finite Element Model
Multiaxial
Probabilistic
High Temperature

High Temperature
Thermo Mechancial Calculator
Thermao Mechancial Materials
Thermo Mechanical Background

Fatigue, How and Why

Thermo Mechanical Analysis

Loading

You may enter the loading in a series of text boxes, paste from the clipboard or as a triangle wave.

Units for £x mm/mm -
UnitsforT C -

Units for At min ~

Text Boxes Clipboard Triangle

will be expanded out automatically. The cycle begins at £x=0 and T=20°C

Initial Monotonic Loading

Point Ex T At Control Mode
1 0.005 550 120 Mechanical Strain - remove

Add A Datapoint

Cyclic Loading

Point Ex T At Control Mode
1 -0.005 100 120 Mechanical Strain - Temove
2 0.005 550 120 Mechanical Strain - Temove

Add A Datapoint

Enter up to ten points. You may paste tab and newline delimited text (such as would be copied from a spreadsheet) into a box, and it

Use the Plot button below to verify that the correct loading information was entered.

’ Plot ] ’ Clear Loading ]
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Material

Sl units { mmimm , MPa | sec and °C ) are expected for all material parameters.

You may select a material by clicking on the Material Property Finder button or specify individual properties directly.

[ Material Property Finder ]

Type steel -

Stress Strain Properties

o [#(&) e () (&)=
o (3 i R = P
a= 00000118
E = 210000 + 35 T+0 T2 MPAfor T < 435
318000 + 283 T+0 T2 MPA
ni= 54
n2= 83
Ko = 256 + 0 T+ 0.0014 T2 MPAfor T < 304
568 + 06 T+0 T2 MPA
Ao = 40e9
AH™ = 210600

Creep Damage

3
, , U/ en/Emeen — 1\
1 r . —AHN\ [ @16 + avoy\" e = exp [—; (M) ]
W = I/A;_-;-‘I' CKP RT K i é
: 0

ECf: 04
AHEM = 2481eb
Acr= 1562e14
m= 1134
a1= 0333
az= 10
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i Summary

eFatigue — Bring fatigue assessment out of
the shade into the sunlight where many
people can have access fatigue
technology on demand.
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