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Information path for fatigue life estimation based on
the da/dN- K method
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Stress intensity factor, K
(indirect method)
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The Similitude Concept states that if the stress
intensity K for a crack in the actual component
and in the test specimen are the same, then the
fatigue crack growth response in the component
and in the specimen will also be the same and
can be described by the material fatigue crack
growth curve da/dN - K.
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The Similitude Concept in the da/dN – K Method
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Crack tip stress dependence on the stress intensity factor K
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Stress components, ij, at the
crack tip depend on the stress
intensity factors KI which is
influenced by:
- the load, S
-crack dimensions, a
-geometry, Y

The stress field , ij, around
the crack tip can be described
by one universal function
valid for all cracks of Mode I,
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G. Irwin’s fundamental Fracture Mechanics principles:
1. The near crack tip stress field expressions above are universal, i.e. the stress
distributions in the vicinity of the crack tip have the same general mathematical
form regardless of the crack geometry, loading and geometrical shape of the body.

2. The strain energy release rate GI is related to the stress intensity factor KI and
therefore it is justified (and easier) to calculate the strain energy release rate (and
the critical stress) from the purely elastic local (near the crack tip) stress
distribution (i.e. from the Stress Intensity Factor).
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A crack becomes unstable (fracture) when the stress intensity factor,
KI , exceeds the critical, for given material, stress intensity factor KIc!

KI > KIc

Strength
parameters
traditionally
used for the
sttrength
analysis of
engineering
components
and structures:
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General Stress Intensity Factor Expressions for Cracks in Mode I

The stress intensity factor is defined as:

in which S is the stress (usually the nominal) away from the crack. The geometry
factor, Y , accounts for the effect of geometry of the crack and the body, the
boundary conditions and the type of loading.
Determining stress intensity factor means in essence the derivation of the function
describing the geometrical factor Y. One of the confusing issues while determining
stress intensity factors is that the remotely applied stress S and the geometry factor
Y are inter-related. The value of parameter Y depends on the definition of the remote
(termed often as nominal) stress S. In cases where the nominal or hot spot stress is
well defined there is no problem in the definition of the remote stress S.  However, if
the stress distribution is non-uniform it may not be clear which stress should be
used in the expression for the stress intensity factor.  Theoretically, any reference
stress S can be chosen for the determination of the geometrical factor Y, as far as
the stress varies proportionally with the applied load. However, the user of given
expression for K has to use the same definition of the reference stress while
carrying out fatigue and fracture analyses. Nominal or the maximum stress in the
case of non-uniform stress distributions is most often used in stress intensity factor
expressions. Therefore, it is a good professional practice to define the reference
stress S when quoting the geometry factor Y.

IK YS a
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(Y. Murakami et. al)

Center Crack Plate under Uniform Tension
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Reference: C.F. Federsen (1), H. Tada (2)

Method: Empirical formula based on Isida’s results

Accuracy: +0.3% for 2a/W 0.7 and 1.0% for 2a/W=0.8
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2a/W 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010
0.200 1.025 1.026 1.026 1.026 1.026 1.027 1.027 1.027 1.028 1.028 1.058
0.210 1.028 1.028 1.029 1.029 1.029 1.029 1.030 1.030 1.030 1.031 1.031
0.220 1.031 1.031 1.032 1.032 1.032 1.032 1.033 1.033 1.033 1.034 1.034
0.230 1.034 1.034 1.035 1.035 1.035 1.035 1.036 1.036 1.036 1.037 1.037
0.240 1.037 1.037 1.038 1.038 1.038 1.039 1.039 1.039 1.040 1.040 1.040
0.250 1.040 1.041 1.041 1.041 1.042 1.042 1.042 1.043 1.043 1.043 1.044
0.260 1.044 1.044 1.045 1.045 1.045 1.046 1.046 1.046 1.047 1.047 1.047
0.270 1.047 1.048 1.048 1.049 1.049 1.049 1.050 1.050 1.051 1.051 1.051
0.280 1.051 1.052 1.052 1.052 1.053 1.053 1.054 1.054 1.054 1.055 1.055
0.290 1.055 1.056 1.056 1.056 1.057 1.057 1.058 1.058 1.059 1.059 1.059
0.300 1.059 1.060 1.060 1.061 1.062 1.062 1.062 1.062 1.063 1.063 1.064
0.310 1.064 1.064 1.064 1.067 1.066 1.066 1.066 1.067 1.067 1.068 1.068
0.320 1.068 1.069 1.069 1.070 1.070 1.071 1.071 1.072 1.072 1.072 1.073
0.330 1.073 1.073 1.073 1.074 1.075 1.075 1.076 1.076 1.077 1.077 1.078
0.340 1.078 1.078 1.078 1.079 1.080 1.080 1.081 1.081 1.082 1.082 1.083
0.350 1.083 1.083 1.083 1.085 1.085 1.086 1.086 1.087 1.087 1.088 1.088
0.360 1.088 1.089 1.089 1.090 1.090 1.091 1.092 1.092 1.093 1.093 1.094
0.370 1.094 1.094 1.094 1.096 1.096 1.097 1.097 1.098 1.098 1.099 1.100
0.380 1.100 1.100 1.100 1.101 1.102 1.103 1.103 1.104 1.104 1.105 1.106
0.390 1.106 1.106 1.107 1.107 1.108 1.109 1.109 1.110 1.111 1.111 1.112
0.400 1.112 1.112 1.113 1.114 1.114 1.115 1.116 1.116 1.117 1.118 1.118
0.410 1.118 1.119 1.120 1.120 1.121 1.122 1.122 1.123 1.124 1.124 1.125
0.420 1.125 1.126 1.126 1.127 1.128 1.128 1.129 1.130 1.131 1.131 1.132
0.430 1.132 1.133 1.133 1.134 1.135 1.136 1.136 1.137 1.138 1.138 1.139
0.440 1.139 1.140 1.141 1.141 1.142 1.143 1.144 1.144 1.145 1.146 1.147
0.450 1.147 1.148 1.148 1.149 1.150 1.151 1.151 1.152 1.153 1.154 1.155
0.460 1.155 1.155 1.156 1.157 1.158 1.159 1.159 1.160 1.161 1.162 1.163
0.470 1.163 1.164 1.164 1.165 1.166 1.167 1.168 1.169 1.170 1.170 1.171
0.480 1.171 1.172 1.173 1.174 1.175 1.176 1.176 1.177 1.178 1.179 1.180
0.490 1.180 1.181 1.182 1.183 1.184 1.185 1.186 1.186 1.187 1.188 1.189
0.580 1.277 1.279 1.280 1.281 1.283 1.284 1.285 1.287 1.288 1.289 1.291
0.590 1.291 1.292 1.293 1.295 1.296 1.297 1.299 1.300 1.302 1.303 1.304
0.600 1.304 1.306 1.307 1.309 1.310 1.311 1.313 1.314 1.316 1.317 1.319
0.610 1.319 1.200 1.322 1.323 1.325 1.326 1.328 1.329 1.331 1.332 1.334
0.620 1.334 1.335 1.337 1.338 1.340 1.342 1.343 1.345 1.346 1.348 1.350
0.630 1.350 1.351 1.353 1.354 1.356 1.358 1.359 1.361 1.363 1.364 1.366
0.640 1.366 1.368 1.370 1.371 1.373 1.375 1.376 1.378 1.380 1.382 1.383
0.650 1.383 1.385 1.387 1.389 1.391 1.392 1.394 1.396 1.398 1.400 1.402

Geometry correction factor,  FI( ) = Y

The SIF geometry correction factor Y; KI = S Y; (central crack)
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Example

A thick center-cracked plate of a high strength aluminum alloy is 200 mm wide and contains a crack
of length 80 mm. If it fails at an applied stresses of 100 MPa, what is the fracture toughness of the
alloy? What value of applied stress would produce fracture for the same length of crack in:

a) an infinite plate

b) a 120 mm wide plate?

2a

2W
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) 120
2 40 0.6666

60

2 0.6666 1.413

; 39.42 0.04 1.413
39.42 78.7
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Geometry Effects on the Stress Intensity Factor
Stress Intensity factors for cracks in a butt weldment and flat plate of the same thickness
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The Weight Function method for calculating Stress Intensity Factors
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2 3 4 5 6 7
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Central through crack in a finite width plate subjected to symmetric loading
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Edge crack in a finite width plate
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The Weight Function method for calculating
Stress Intensity Factors

The Stress Intensity Factor for any loading case is equal to the stress intensity
factor obtained by applying to the crack faces the stresses that used to be there
when there was no crack.
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Stepwise Procedure for the Stress Intensity
Calculation using the Weight Function Method

1. Calculate stress distribution (x) in the prospective crack plane in the
absence of the crack (un-cracked body, linear elastic analysis).

x f x0 ,

2. Apply the stress distribution (x) to the crack surface as tractions.

x x xm x a M M M
a a aa x

1/2 1 3/2

1 2 3
2( , ) 1 1 1 1

2

4. Integrate the product of the stress distribution (x) and the weight function m(x,a).

a

a

K x m x a dx( , )

3. Choose appropriate weight function, i.e. parameters M1, M2 and M3.
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The superposition principle for calculation of stress
intensity factors using the weight function approach;
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a) stress distribution in the prospective crack plane in the un-cracked body;
b) the “un-cracked stress field” applied to the crack surfaces of identical

body with a crack;
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Through the plate thickness stress distributions in a T-butt weldment
obtained for r/t = 1/25, = 45o (in the weld toe cross section)

(y
)/

n

y / T

FEM
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Geometrical Stress Intensity Correction Factor “Y” for
an Edge Crack Emanating from the Weld Toe

(Comparison of WF and FEM data)

T-butt welded joint; Tension loading T-butt welded joint; Bending load
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Calculation of SIF for cracks
at notches using the weight
functions for edge and
through cracks
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Fracture Mechanics Approach to Fatigue Crack
Growth Analysis

•Fatigue crack growth equations

•Integration of  fatigue crack growth expressions

•The effect of the initial crack size

•The effect of the weld geometry

•Residual stress effect

•Example
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A sharp crack in a tension stress field causes a high stress
concentration at the its tip resulting in slip and plastic deformation in
the crack tip vicinity. The material above and below  the crack tip may
slip along a favorable slip plane in the direction of maximum shear
stress.
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Fatigue Crack Growth Micro-Mechanism
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The ‘a vs. N’ data is obtained in
practice by periodic measurement of
the crack length, a,  together with the
number of cycles, N. The raw data is
usually given in the form of series of
points as shown in the figure.
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The Fracture Mechanics approach to fatigue or the da/dN - K method is a technique based on the
analysis of fatigue crack growth. The combination of load/stress and geometry parameters, necessary
for the quantification of damage due to crack growth, is represented by the stress intensity factor, K,
in the case of monotonic load and by the range of the stress intensity factor, K, in the case of cyclic
loading.
The fatigue material properties are characterized by the threshold stress intensity range, Kth, the
fatigue crack growth rate relationship, da/dN vs. K, and the critical stress intensity factor, Kc, to be
often the same as the fracture toughness, KIc. The crack growth rate is then described by an
expression being function of the stress intensity range:

da f K
dN ,

The stress intensity range associated with a stress cycle is calculated as:

max min max minK K K S a Y S a Y
where – a is the crack size, Smax and Smin is the maximum and minimum nominal (or reference) stress
respectively, characterizing a stress cycle, and Y is the geometry correction factor.  The aim of the
final analysis of the da/dN- K data is to determine necessary constants and parameters appearing in
expression f( K).
It should be noted that the ‘da/dN - K’ curve in fracture mechanics represents the material fatigue
resistance similarly to the S-N curve in the nominal stress approach or the ‘  - N’ relationship in the
local strain-life methodology.
As soon as the crack growth curve for the material of interest is known the fatigue life of the structural
component can be determined as shown in the figure below.
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The notation for the cyclic stress history parameters and the steps necessary for the determination of
the da/dN - K relationship are explained later in the following sections of the notes.

The fatigue life in terms of the number of cycles necessary to propagate the crack from its initial size,
a0, to the final or critical crack size, af, is determined by integrating the crack growth equation.

ff
aa

a a

da daN
f K f S a Y

0 0

The determination of the integral above needs a numerical treatment because the geometry
correction factor, Y, becomes frequently a complex function of the crack size, a.

Subsequent stages of the fatigue life prediction method based on the crack growth analysis are
shown graphically in the Figure.
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Constant Amplitude Cyclic Load - Notation

Smin - minimum stress

Smax - maximum stress

S = Smax- Smin - stress range

Sa = S /2 = (Smax- Smin )/2 - mean stress

R = Smin/ Smax - stress ratio

Smax

Smin
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re

ss
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Fatigue Crack Growth Rate vs. Stress Intensity Factor
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Scatter of fatigue crack
growth data; Low alloy steel

18G2VA

4 mm thick plate 4 mm thick welded plate
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The Fatigue Crack Growth Expression – The Paris equation
The first mathematical relationship relating fatigue crack growth rate and the stress intensity range was
proposed by Paris and Erdogan. This relationship is up to date the most popular mathematical expression used
if various fatigue/fracture mechanics analyses. It was obtained by fitting power law  curve into the experimental
data.

mda C K
dN

Where: da/dN - fatigue crack growth rate [in/cycle or m/cycle]
C - Paris’ equation parameter (valid for given R)
m - Paris’ equation exponent

K - stress intensity range

max min min

max min

max max

min min

0
0

K K K for K
K K for K

K S a Y

K S a Y

Where:
a      - crack length/depth
Smax - maximum stress in a stress cycle
Smin - minimum stress in a stress cycle
Kmax - maximum stress intensity factor
Kmin - minimum stress intensity factor
Y     - geometry correction factor in the stress intensity factor expression
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Complete Fatigue Crack Growth Rate Curve, da/dN - K
Soon after the Paris equation gained wide acceptance as a tool for fatigue crack growth analysis, it was
found that the simple expression proposed by Paris and Erdogan had some limitations. As the Figure
below illustrates the complete log-log plot of da/dN vs. K is sigmoidal rather then linear and limited by the
threshold stress intensity range, Kth, and the critical stress intensity factor Kc.

At low growth rates, the da/dN vs. K curve becomes steep and appears to approach a vertical asymptote
denoted Kth, which is called the fatigue threshold stress intensity range or fatigue crack growth threshold.
This quantity is interpreted as a lower limiting value of the stress intensity factor range K below which
fatigue crack growth does not ordinarily occur. The fatigue crack growth threshold is analogous to the
fatigue limit in the S-N approach.

At high growth rates, the da/dN vs. K curve may again become steep. This is due to rapid unstable crack
growth just prior to final fracture when Kmax Kc. The increase of the fatigue crack rate near the critical
stress intensity factor Kc is due to mixture of static (monotonic -fracture) and fatigue mechanisms driving
the crack growth.

Also, the fatigue crack growth rate exhibits a dependence on the stress ratio ‘R’. The stress ratio R affects
the fatigue crack growth rate in a manner analogous to the effects observed in the S-N and -N methods,
i.e. for a given K, increasing R-ratio increases the fatigue crack growth rate, and vice-versa.

The effect of the R -ratio (or mean stress) on Fatigue Crack Growth is most often explained using the
phenomenon discovered by Elber. By measuring the compliance of specimens with fatigue cracks he
noticed that the crack tip got closed during the descending part of the stress cycle in spite of the fact that
the applied stress/load remained tensile (see Figure). Elber postulated that crack closure decreases the
fatigue crack growth rate by reducing the effective stress intensity range.
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The da/dN- K curve is the
fatigue material curve

independent of the geometry,
i.e. the same curve for all
geometrical crack-body

configurations!



For simplicity reasons the
complete fatigue crack
growth rate is usually
approximated by three

linear pieces with the two
of them being vertical
limiting asymptotes.
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3.0126.9 10da K
dN

2.25101.4 10da K
dN

3.25125.6 10da K
dN

Ferritic-Pearlitic Steel:

Martensitic Steel:

Austenitic Stainless Steel:

J. Barsom, “Fatigue Crack Propagation in Steels of Various Yield Strengths”
Journal of Engineering for Industry, Trans. ASME, Series B, Vol. 93, No. 4, 1971, 1190-1196
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Paris’ equation constants for steel materials at R = 0
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Estimation of the Fatigue Crack Propagation Life
Basic Steps:

1. Estimate the initial crack size and shape, ao;

- non-destructive testing - ao

- proof load                     - ao

2. Estimate the critical crack size ac based on the fracture toughness KIC, i.e. the crack size
that the component will tolerate when the applied stress reaches its maximum Smax.

3. Using the same expression for the stress intensity factor calculate the stress intensity
range K.

2

max
max

1 IC
IC c c c

c

KK S a Y a
S Y

max

0

0 ( 0!!)r

K S a Y for R

K S a Y for R if
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4.  Substitute K into fatigue crack growth equation (Paris or Forman)

( ) ( )m m mda C K C S a Y
dN

5.  Integrate the equation above from a = ao to a =ac and determine the number of
cycles, N, necessary to grow the crack from the initial crack size of ao to the critical
size of ac.  This is the estimated fatigue crack propagation life of given component!

( )

( ) ( )

cc

o o

m

aa

m

a a

dadN
C K

da daN
C K C S a Y

Note!  In most practical cases the integration requires numerical solution due to the
complexity of the geometric factor Y.
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Integrated Paris’ Equation for a Constant Geometric
Factor, Y = const.

/ 2 ( 2) / 2 ( 2) / 2

2 2
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2

2 1 1 ;
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m m m m
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m m
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..................................................

1; 1; ; ;
m

i i i i i i i i i

i c

N N a C S a Y a a a

until a a

Calculations have to be
carried out for each cycle !!

Numerical Integration of the Paris Equation
If the Y factor is not constant a numerical technique has to be applied. The most
often used is the cycle by cycle technique based on the calculation of crack
increments ai corresponding to each load cycle.  In this case, the infinitesimal
increments da and dN are replaced by finite differences a and N= 1.

1 1 1
1

( ) ( ) ; ; ( )
N

m m mi
i i i i i o i i i i i i

ii

a C K C S a Y a a a a C S a Y N
N
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Subsequent stages of fatigue life prediction method based on the crack
growth analysis

 Analysis of external forces acting on the structure and the component in question (a),
 Analysis of internal loads in chosen cross section of a component ( b),
 Selection of individual welded joints in the structure (c),
 Identification of appropriate nominal or reference stress history (d),
 Extraction of stress cycles (rainflow counting) or reversals from the stress history

(Fig.e),
 Determination of the stress intensity factor (i.e. the factor Y) for postulated or existing

crack,
- indirect method (Fig.f):

 analyze un-cracked weldment and determine the stress field, (x,y), in the
prospective crack plane; normalize the calculated stress distribution with respect to
the nominal or any other reference stress, i.e. (x,y)/ n,

 choose appropriate weight function,
calculate stress intensity factor

 determine the stress or displacement field near the crack, or the strain energy
release rate,

 calculate stress intensity factor using.
 Determination of crack increments for each stress cycle (Fig. h),
 Determination of the number of cycles, N, necessary to grow the crack from its initial

size, a0, up to the final size, af.

A summary of necessary input data and procedures used in the, da/dN - K, approach
to fatigue life estimation is also presented in the Figure.
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Example: A very wide SAE 1020 cold-rolled thin plate is subjected to constant amplitude uni-axial cyclic
loads that produce nominal stresses varying from Smax=200MPa (29ksi) to Smin=-50 MPa (-7.3ksi). The
monotonic properties for this steel are Y=630 MPa (91 ksi), uts=670 MPa (97 ksi), E=207000 MPa
(30000 ksi), Kc =104 MPa m (95 ksi in). What fatigue life would be attained if an initial through-thickness
edge crack existed and was 1 mm (0.04 in) in depth?

a

W >> a

S

S

Smax

Smin

time

St
re

ss

0

The fatigue crack growth data are:
Kth(r=0)=6 MPa m, and Paris’ equation

parameters C=6.9 10-12 and m=3.
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B. Is Linear Elastic Fracture Mechanics

(LEFM) applicable?

max

max max

2 2
max

:
0.8 0.8 630 504 !

:

200 0.001 1.12 12.6

1 1 12.6 0.0000635 0.0635
2 630

0.0635 1 0.125 !
1 8

Y

y
Y

y

Nominal stress level
S MPa YES

Plastic zone size

K S a Y MPa m

Kr m mm

r
YES

a

A. What is the stress intensity factor expression?

Semi-infinite  plate with an edge crack.

max max max 1.12K S a Y S a
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C. The effective stress range

max min min

max min

max min

max

0
0

200 50

200

S S S for S
S S for S

S MPa and S MPa
thus

S S MPa

D. Is the Paris equation applicable?

0 0

0 0

0

!
0.001 .

200 0.001 1.12 12.6

12.6 6 , !

th

th

Paris equation is valid for K K
Smallest K K occurs for a a m

K S a Y MPa m

K K MPa m YES Paris equation is applicable
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E. What is the critical/final crack size?

max

2 2

max

1 1 104 0.068 68
200 1.12

c final c

c
c

K K S a Y

Ka m mm
S YE. Integration of the Paris equation

Analytical integration is possible because Y= const.

000

2 2
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( 2) / 2 ( 2) / 2
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c

cycles
a a
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Fatigue Crack Growth under Variable Amplitude Loading:
the retardation effect
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Evolution of the crack tip plastic zone ahead of
a fatigue crack & crack tip closure
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The effect of the crack tip closure
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Fatigue Growth of Corner Cracks in a Lug Subjected to
a VA Loading History

a

d

2W

(x)

r
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x

a+r

(x)

r
x

Experimental data from: Jong-Ho Kim, Soon-Bok Lee, Seong-Gu Hong, Int. Journal of Fatigue, vol. 40, 2003
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The Lug Loading Histories, Pmax=21 kN
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Fatigue life for 80% and 100% Clipped Loading History+Load Shedding: Al7050 T7
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Experimental data from: Jong-Ho Kim, Soon-Bok Lee, Seong-Gu Hong, Int. Journal of Fatigue, vol. 40, 2003
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Crack Shape Evolution;Crack Shape Evolution; quarter circular initial crackquarter circular initial crack

Predicted vs. Measured Crack Shape Evolution in the Lug,
100% Clipping
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Experimental data from: Jong-Ho Kim, Soon-Bok Lee, Seong-Gu Hong, Int. Journal of Fatigue, vol. 40, 2003

Crack Shape Evolution;Crack Shape Evolution; quarter circular initial crackquarter circular initial crack
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Experimental data from: Jong-Ho Kim, Soon-Bok Lee, Seong-Gu Hong, Int. Journal of Fatigue, vol. 40, 2003
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Weight Function for Arbitrary Planar Cracks
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Location of maximum
shear stress

Fig. 10. Geometry and dimensions of the spring

D=18.5 mm,   d=4 mm
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Relative dimensions of the inclusion (d=20-30 m) and the final
crack size (2af= 700 m)
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Main steps in fatigue design – flow chart

Data analysis

Collecting data SimulationSelecting criteria

Designing Stress relive!

31 2

3

4

5

Start

The
End !

© 2010 Grzegorz Glinka.  All rights reserved. 59

http://www.clipart.com/en/close-up?o=2838418&memlevel=A&a=p&q=probability&k_mode=&s=1&e=21&show=&c=&cid=&findincat=&g=&cc=&page=&k_exc=&pubid=

