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Information path for fatigue life estimation based on
the da/dN-AK method

LOADING GEOMETRY, K; MATERIAL

/E
PSO '
B i

\4

Stress-Strain
Analysis

MATERIAL

Damage Analysis

© 2008 Grzegorz Glinka. All rights reserved. 2



Steps in Fatigue Life Prediction Procedure Based on the

da/dN-AK Approach (cont'd)

f)

© 2008 Grzegorz Glinka. All rights reserved.

Stress intensity factor, K
(indirect method)

Weight function, m(x,y)

K:Ho(x,y)m(x,y)dxdy

K

o,Nma

Y =

Stress intensity factor, K
(direct method)

Ki =027 Xeg

or

K= Ed—U:\/EG
da

_____

A

)

£

Crack depth, a

Fatigue Life

-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
»
»
|
|
|
|
|
|
|
|
|
;
1

A
: Number of cycles, N
|
|

v

h)

Integration of Paris’ equation

Aa, =C(AK;)" AN,

N
a; =a,+ ) Ag,
i=1

N => AN,




The Similitude Concept in the da/dN — AK Method
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The Similitude Concept states that if the stress
- . p-
intensity K for a crack in the actual component
- y . p
and in the test specimen are the same, then the
fatigue crack growth response in the component
and in the specimen will also be the same and
(9) can be described by the material fatigue crack

© 2008 Grzegorz Glinka. All rights reserved. 4

growth curve da/dN - AK.



Crack tip stress dependence on the stress intensity factor K
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K, <K, <K,

Stress components, g, at the
crack tip depend on the stress
intensity factors K, which is

influenced by:
-theload, S

-crack dimensions, a
-geometry, Y

The stress field , o, around
the crack tip can be described
by one universal function
valid for all cracks of Mode I,
I.e. for ¢=0

O__K
Y 27T X



G. Irwin’s fundamental Fracture Mechanics principles:

1. The near crack tip stress field expressions above are universal, i.e. the stress
distributions in the vicinity of the crack tip have the same general mathematical
form regardless of the crack geometry, loading and geometrical shape of the body.

2. The strain energy release rate G, is related to the stress intensity factor K, and
therefore it is justified (and easier) to calculate the strain energy release rate (and
the critical stress) from the purely elastic local (near the crack tip) stress
distribution (i.e. from the Stress Intensity Factor).

(V)

G, = = =EI — plane stress
2
G, = (S\/jlr:aY) (1—v2)=KE'2(1—v2) — plane strain
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A crack becomes unstable (fracture) when the stress intensity factor,
K,, exceeds the critical, for given material, stress intensity factor K,.!

K> K

Stress Intensity
Force [MN]  Stress [MPa]  Factor [MPavm]

Strength P O K Fracture
parameters | Mechanics
traditionally parameters
used for the used for the
sttrength P O- K strength
analysis of Y Y C analysis of
engineering engineering
components P O— K components
and structures: Cr uts Ic and structures:

Leonardo da Vinci Euler, Cauchy [rwin

17th-century 19th -century 20th-century
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General Stress Intensity Factor Expressions for Cracks in Mode |

The stress intensity factor is defined as:

K, =S+/ra-Y

in which Sis the stress (usually the nominal) away from the crack. The geometry
factor, Y , accounts for the effect of geometry of the crack and the body, the
boundary conditions and the type of loading.

Determining stress intensity factor means in essence the derivation of the function
describing the geometrical factor Y. One of the confusing issues while determining
stress intensity factors is that the remotely applied stress S and the geometry factor
Y are inter-related. The value of parameter Y depends on the definition of the remote
(termed often as nominal) stress S. In cases where the nominal or hot spot stress is
well defined there is no problem in the definition of the remote stress S. However, if
the stress distribution is non-uniform it may not be clear which stress should be
used in the expression for the stress intensity factor. Theoretically, any reference
stress S can be chosen for the determination of the geometrical factor Y, as far as
the stress varies proportionally with the applied load. However, the user of given
expression for K has to use the same definition of the reference stress while
carrying out fatigue and fracture analyses. Nominal or the maximum stress in the
case of non-uniform stress distributions is most often used in stress intensity factor
expressions. Therefore, it is a good professional practice to define the reference
stress S when quoting the geometry factor Y.

© 2010 Grzegorz Glinka. All rights reserved. 8



Center Crack Plate under Uniform Tension
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2a Reference: C.F. Federsen (1), H. Tada (2)
K, =ovra-F(a), a= W' Y =F (a) Method: Empirical formula based on Isida’s results

(1)
F, (x)= \/sec(a%)

(2) KI =ocvrna-F (a) . (1_ 0.025a? + 0.06064) Accuracy: Better than 0.2% for any value of

Accuracy: +0.3% for 2a/W<0.7 and 1.0% for 2a/W=0.8

or

(Y. Murakami et. al)

© 2010 Grzegorz Glinka. All rights reserved. 9



The SIF geometry correction factor Y; K, = SY1ra-Y; (central crack)

Geometry correction factor, F(a) =Y

2a/W 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010
0.200 1.025 1.026 1.026 1.026 1.026 1.027 1.027 1.027 1.028 1.028 1.058
0.210 1.028 1.028 1.029 1.029 1.029 1.029 1.030 1.030 1.030 1.031 1.031
0.220 1.031 1.031 1.032 1.032 1.032 1.032 1.033 1.033 1.033 1.034 1.034
0.230 1.034 1.034 1.035 1.035 1.035 1.035 1.036 1.036 1.036 1.037 1.037
0.240 1.037 1.037 1.038 1.038 1.038 1.039 1.039 1.039 1.040 1.040 1.040
0.250 1.040 1.041 1.041 1.041 1.042 1.042 1.042 1.043 1.043 1.043 1.044
0.260 1.044 1.044 1.045 1.045 1.045 1.046 1.046 1.046 1.047 1.047 1.047
0.270 1.047 1.048 1.048 1.049 1.049 1.049 1.050 1.050 1.051 1.051 1.051
0.280 1.051 1.052 1.052 1.052 1.053 1.053 1.054 1.054 1.054 1.055 1.055
0.290 1.055 1.056 1.056 1.056 1.057 1.057 1.058 1.058 1.059 1.059 1.059
0.300 1.059 1.060 1.060 1.061 1.062 1.062 1.062 1.062 1.063 1.063 1.064
0.310 1.064 1.064 1.064 1.067 1.066 1.066 1.066 1.067 1.067 1.068 1.068
0.320 1.068 1.069 1.069 1.070 1.070 1.071 1.071 1.072 1.072 1.072 1.073
0.330 1.073 1.073 1.073 1.074 1.075 1.075 1.076 1.076 1.077 1.077 1.078
0.340 1.078 1.078 1.078 1.079 1.080 1.080 1.081 1.081 1.082 1.082 1.083
0.350 1.083 1.083 1.083 1.085 1.085 1.086 1.086 1.087 1.087 1.088 1.088
0.360 1.088 1.089 1.089 1.090 1.090 1.091 1.092 1.092 1.093 1.093 1.094
0.370 1.094 1.094 1.094 1.096 1.096 1.097 1.097 1.098 1.098 1.099 1.100
0.380 1.100 1.100 1.100 1.101 1.102 1.103 1.103 1.104 1.104 1.105 1.106
0.390 1.106 1.106 1.107 1.107 1.108 1.109 1.109 1.110 1.111 1.111 1.112
0.400 1.112 1.112 1.113 1.114 1.114 1.115 1.116 1.116 1.117 1.118 1.118
0.410 1.118 1.119 1.120 1.120 1.121 1.122 1.122 1.123 1.124 1.124 1.125
0.420 1.125 1.126 1.126 1.127 1.128 1.128 1.129 1.130 1.131 1.131 1.132
0.430 1.132 1.133 1.133 1.134 1.135 1.136 1.136 1.137 1.138 1.138 1.139
0.440 1.139 1.140 1.141 1.141 1.142 1.143 1.144 1.144 1.145 1.146 1.147
0.450 1.147 1.148 1.148 1.149 1.150 1.151 1.151 1.152 1.153 1.154 1.155
0.460 1.155 1.155 1.156 1.157 1.158 1.159 1.159 1.160 1.161 1.162 1.163
0.470 1.163 1.164 1.164 1.165 1.166 1.167 1.168 1.169 1.170 1.170 1171
0.480 1171 1.172 1.173 1.174 1.175 1.176 1.176 1.177 1.178 1.179 1.180
0.490 1.180 1.181 1.182 1.183 1.184 1.185 1.186 1.186 1.187 1.188 1.189
0.580 1.277 1.279 1.280 1.281 1.283 1.284 1.285 1.287 1.288 1.289 1.291
0.590 1.291 1.292 1.293 1.295 1.296 1.297 1.299 1.300 1.302 1.303 1.304
0.600 1.304 1.306 1.307 1.309 1.310 1.311 1.313 1.314 1.316 1.317 1.319
0.610 1.319 1.200 1.322 1.323 1.325 1.326 1.328 1.329 1.331 1.332 1.334
0.620 1.334 1.335 1.337 1.338 1.340 1.342 1.343 1.345 1.346 1.348 1.350
0.630 1.350 1.351 1.353 1.354 1.356 1.358 1.359 1.361 1.363 1.364 1.366
0.640 1.366 1.368 1.370 1.371 1.373 1.375 1.376 1.378 1.380 1.382 1.383
0.650 1.383 1.385 1.387 1.389 1.391 1.392 1.394 1.396 1.398 1.400 1.402
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Example

A thick center-cracked plate of a high strength aluminum alloy is 200 mm wide and contains a crack
of length 80 mm. If it fails at an applied stresses of 100 MPa, what is the fracture toughness of the
alloy? What value of applied stress would produce fracture for the same length of crack in:

a) an infinite plate

b) a 120 mm wide plate?

I

2W

© 2010 Grzegorz Glinka. All rights reserved. 11



a) Finite width plate
2W =200mm, 2a =80mm,oc =100MPa

a
K= a-Y: Y=f|—|
ora (W)

See notation in the Handbook :

2a _ 2_aj _(i)
W handbook 2W example W example

W handbook W example 100

Y (Z—a = 0.4) =1.112
W

K = o+Jra-Y =100v7 x0.04 x1.112 = 39.42 MPav/m

K = K, =39.42 MPa/m

b) Ininitely wide plate

K=ovrma-Y;

and Y =1

K.=K; 3942=0+7x0.04

39.42

O=—F————
N x0.04

=111.20 MPa

© 2010 Grzegorz Glinka. All rights reserved.
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c) Plate 120mm wide

(@j _ (i) _4%0 _ 6666
W handbook W example 60

Y [é = 0.6666j =1.413
W

K.=K; 3942=0+V7nx0.04 x1.413
39.42

O =
V7 x0.04 x1.413

=78.7MPa




Geometry Effects on the Stress Intensity Factor

Stress Intensity factors for cracks in a butt weldment and flat plate of the same thickness
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The Weight Function method for calculating Stress Intensity Factors

1 1 3
KE=m(x,.a 1):J2n(2:1—x ){u Ml(l—%)2+M2(l—%j +M3(1—);1)2}
1

S : 1 3
2 2

R Ko=m(xaP)=—22  f1em 1= em,[1-22) 4 m,[1-%

y J2rz(a-x,) a a a

% %‘ix) . K =m(x,,a,P)+m(x,,a,P,)

P, | P, :

2 5 a

- t - KZ(X) =I|:o-(x)m(x,a):|dx
0

© 2010 Grzegorz Glinka. All rights reserved. 14



Geometrical parameters and notation for weight functions

yA A y
A P | A \
X 2 X | X
- A X ) 7 X
g AN
A
Y \ \
a 2a
l————— P < >
L W . L 2W |

3

_ 1 —

KE=m(x,aP)= o 2 )1+M1(1—5)2+M2(1—5j+M3(1—5)2
T a X
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Central through crack in a finite width plate subjected to symmetric loading

2 3 4 5 6 7
Ml=0.06987+O.401l7(3)—5.5407(3) +50.0886(3j —200.699(ij +395.552(ij —377.939(% +14o.218(3j
w w w w w w w

2 3 4 5 6
M, =—0.09049—2.14886(3J+22.5325(ij —89.6553(Ej +210.599(3) —239.445(3j +111.128(3j
W W W W W '
a a 2 a : a * a ° a ° a !
M3:O.427216+2.56001(—)—29.6349(—) +138.40(—j —347.255(—j +457.128(—j —295.882(—) +68.1575(—j
W W ' W ' W '

Edge crack in a finite width plate
a a 2 a ° a ‘ a ° a ° a !
Ml:0.0719768—1.51346(—}—61.1001(—} +1554.95(—J —14583.8(—) +71590.7(—j —205384(—) +356469(—j
w w w w w w w
a

8 9 10
—368270( j + 208233 j - 49544(—j
w w

J

3 4 5 6 7
_5479. 53( j +28592.2(Ej —81388.6(3j +128746(ij —106246(ij
W W W W

“’Elm

2 3 4 5 6 7
M _0246984+647543( j+176 457( j _ 4058, 76( j +37303.8(%j —181755(%) +520551(%) —904370(%)
+936863( j —531940( j +127291(

= 0.529659 - 22. 3235( +532. 074(

+35780.7(—j
'
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The Weight Function method for calculating
Stress Intensity Factors

y4 /S y 4 S y 4

L7 o(X) L7 o(X)

v
v

A
A

4 TS / \s

a) b) c)

K, = Kg

The Stress Intensity Factor for any loading case is equal to the stress intensity

factor obtained by applying to the crack faces the stresses that used to be there
when there was no crack.
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Stepwise Procedure for the Stress Intensity
Calculation using the Weight Function Method

1. Calculate stress distribution o(x) in the prospective crack planein the
absence of the crack (un-cracked body, linear elastic analysis).

o(x)= T (o, x)

2. Apply the stress distribution o(x) to the crack surface as tractions.

3. Choose appropriate weight function, i.e. parameters M;, M, and M.

m(x,a)= ——2 {1+M1(1—X) +M2(1—5)+M3(1—5) }
\/Zﬂ(a—x) a a a

4. Integrate the product of the stress distribution o(x) and the weight function m(x,a).

K= _[ m(x a)dx

© 2010 Grzegorz Glinka. All rights reserved. 18



The superposition principle for calculation of stress

a) intensity factors using the weight function approach;

a) stress distribution in the prospective crack plane in the un-cracked body;
b) the “un-cracked stress field” applied to the crack surfaces of identical

r body with a crack;
®
— >
-
Prospective crack plane/ \G(y) -z
o
Yy )
b
) T, a

© 2010 Grzegorz Glinka. All rights reserved.
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Through the plate thickness stress distributions in a T-butt weldment
obtained for r/t = 1/25, ® = 45° (in the weld toe cross section)

3
FEM ACTUAL STRESS FIELD
———— NOMINAL STRESS FIELD
2
bC
S )
5 TENSION

_1
00 02 04 06 0.8 1.0
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Geometrical Stress Intensity Correction Factor “Y” for
an Edge Crack Emanating from the Weld Toe

(Comparison of WF and FEM data)

T-butt welded joint; Tension loading
Oore and Burns wt. func.

...... Niu and Glinka wt. func.
ooooo Smith F.E.M. [24]

0.2 0.4 0.6

© 2010 Grzegorz Glinka. All rights reserved.
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S

T-butt welded joint; Bending load
QOore and Buras wt. func.

...... Niu and Glinka wt. funec.
+++++ Bell F.EM. [22,23]
4 ococoo Smith F.E.M. [24]
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Calculation of SIF for cracks
at notches using the weight
functions for edge and
through cracks



Fracture Mechanics Approach to Fatigue Crack
Growth Analysis

sFatigue crack growth equations

sIntegration of fatigue crack growth expressions
*The effect of the initial crack size

*The effect of the weld geometry

*Residual stress effect

*Example

© 2010 Grzegorz Glinka. All rights reserved. 23



Fatigue Crack Growth Micro-Mechanism

A sharp crack in a tension stress field causes a high stress
concentration at the its tip resulting in slip and plastic deformation in
the crack tip vicinity. The material above and below the crack tip may
slip along a favorable slip plane in the direction of maximum shear

stress.

(c)

Stress

(d)

(b)

(R.Pelloux, ASTM,
STP 415, 1967)

(C. Laird, ASTM,
STP 415, 1967)
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Experimental data for the determination of the fatigue crack growth curve

A
s | AS;>AS,>AS;
=
=X Aa
Q
X
§ Applied nominal stress history
o
da/dN= Aa/ AN
ag ¢
> 0p)
0 - )
A Number of applied cycles, N 2 2
S e - Experimental test data : @
o
o ol Time, t
®
© a s
N
5 "\“ ¢
c ‘ D)
f ‘ The ‘a vs. N’ data is obtained in
S practice by periodic measurement of
S S o® \ a;, N; the crack length, a, together with the
oo *° da/dN number of cycles, N. The raw data is
a2 keve® @ IUY usually given in the form of series of
0 points as shown in the figure.
>
0

Number of applied cycles, N
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The Fracture Mechanics approach to fatigue or the da/dN - AK method is a technique based on the
analysis of fatigue crack growth. The combination of load/stress and geometry parameters, necessary
for the quantification of damage due to crack growth, is represented by the stress intensity factor, K,
in the case of monotonic load and by the range of the stress intensity factor, AK, in the case of cyclic
loading.

The fatigue material properties are characterized by the threshold stress intensity range, AKy, the
fatigue crack growth rate relationship, da/dN vs. AK, and the critical stress intensity factor, K., to be
often the same as the fracture toughness, K,.. The crack growth rate is then described by an
expression being function of the stress intensity range:

da _
dN

The stress intensity range associated with a stress cycle is calculated as:

AK = Kmax _Kmin :Smax Vra xY _Smin Vra xY

where — a is the crack size, Spmax and Spn is the maximum and minimum nominal (or reference) stress
respectively, characterizing a stress cycle, and Y is the geometry correction factor. The aim of the
final analysis of the da/dN-AK data is to determine necessary constants and parameters appearing in
expression f(AK).

It should be noted that the ‘da/dN - AK’ curve in fracture mechanics represents the material fatigue
resistance similarly to the S-N curve in the nominal stress approach or the ‘s - N’ relationship in the
local strain-life methodology.

As soon as the crack growth curve for the material of interest is known the fatigue life of the structural

component can be determined as shown in the flgure below.
© 2010 Grzegorz Glinka. All rights reserved.
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The notation for the cyclic stress history parameters and the steps necessary for the determination of
the da/dN - AK relationship are explained later in the following sections of the notes.

The fatigue life in terms of the number of cycles necessary to propagate the crack from its initial size,
ao, to the final or critical crack size, a;, is determined by integrating the crack growth equation.

a; ag

da da

) £(AK) f(AsJEExY)

a

Q

The determination of the integral above needs a numerical treatment because the geometry
correction factor, Y, becomes frequently a complex function of the crack size, a.

Subsequent stages of the fatigue life prediction method based on the crack growth analysis are
shown graphically in the Figure.

© 2010 Grzegorz Glinka. All rights reserved. 27



Constant Amplitude Cyclic Load - Notation

Stress, S

t

Sin - Minimum stress

Siax - Maximum stress
AS =S, - Snin - Stress range
S,=AS /2 = (S, Smin )/2 - mean stress

R =S,/ Smax - Stress ratio

© 2010 Grzegorz Glinka. All rights reserved. 28



Fatigue Crack Growth Rate vs. Stress Intensity Factor

9 L1t o

4
i
.

B

o
)"- K =S+<za-Y

and

a
BN

&

AK =AS+/rza -Y

- crack length
]
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da/dN (mm/cycle)

ao
3F %Q> v
Ag 4t .
- R .‘-
2t 3r
X |
102} i
I 30
7 10 [
4 i
L. 5 e
sl I
4 b
2 b 3f
No. Ao I No. Ao
i oul 196 ot eP1 107
10-4 ¢ AU2 142 AP2 127
i vu3 111 wvp3 111
, - gu4 107 4 8P4 107
20 30 40 50 © 20 30 40 50
"AK(MPavm) AK(MPavm)

4 mm thick plate
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4 mm thick welded plate
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Scatter of fatigue crack

growth data; Low alloy steel
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The Fatigue Crack Growth Expression — The Paris equation

The first mathematical relationship relating fatigue crack growth rate and the stress intensity range was
proposed by Paris and Erdogan. This relationship is up to date the most popular mathematical expression used
if various fatigue/fracture mechanics analyses. It was obtained by fitting power law curve into the experimental

data.
da m
an = C (AK)

Where: da/dN - fatigue crack growth rate [in/cycle or m/cycle]

C- Paris’ equation parameter (valid for given R)
m - Paris’ equation exponent
AK - stress intensity range

AK =K .. — K. . for K. .. =0
AK =K. for K..,<0O

Where:

- crack length/depth K —— S T Ira - Y

max - Maximum stress in a stress cycle

min = MINIMum stress in a stress cycle Kmin — Smin vra - Y

a

S

S

Kmax - Maximum stress intensity factor

Kinin - Minimum stress intensity factor

Y - geometry correction factor in the stress intensity factor expression

© 2010 Grzegorz Glinka. All rights reserved. 31



Complete Fatigue Crack Growth Rate Curve, da/dN - AK

Soon after the Paris equation gained wide acceptance as a tool for fatigue crack growth analysis, it was
found that the simple expression proposed by Paris and Erdogan had some limitations. As the Figure
below illustrates the complete log-log plot of da/dN vs. AK is sigmoidal rather then linear and limited by the
threshold stress intensity range, AKy,, and the critical stress intensity factor K..

At low growth rates, the da/dN vs. AK curve becomes steep and appears to approach a vertical asymptote
denoted AKy,, which is called the fatigue threshold stress intensity range or fatigue crack growth threshold.
This quantity is interpreted as a lower limiting value of the stress intensity factor range AK below which
fatigue crack growth does not ordinarily occur. The fatigue crack growth threshold is analogous to the
fatigue limit in the S-N approach.

At high growth rates, the da/dN vs. AK curve may again become steep. This is due to rapid unstable crack
growth just prior to final fracture when K., — K.. The increase of the fatigue crack rate near the critical
stress intensity factor K, is due to mixture of static (monotonic -fracture) and fatigue mechanisms driving
the crack growth.

Also, the fatigue crack growth rate exhibits a dependence on the stress ratio ‘R’. The stress ratio R affects
the fatigue crack growth rate in a manner analogous to the effects observed in the S-N and e-N methods,
l.e. for a given AK, increasing R-ratio increases the fatigue crack growth rate, and vice-versa.

The effect of the R -ratio (or mean stress) on Fatigue Crack Growth is most often explained using the
phenomenon discovered by Elber. By measuring the compliance of specimens with fatigue cracks he
noticed that the crack tip got closed during the descending part of the stress cycle in spite of the fact that
the applied stress/load remained tensile (see Figure). Elber postulated that crack closure decreases the
fatigue crack growth rate by reducing the effective stress intensity range.

© 2010 Grzegorz Glinka. All rights reserved. 32



AK, Stress Intensity Range, [ksivVin]
5 10 20 50

107 |
A533B-1 steel,

c,=627 MPa

10° -

10° -

Crack Growth Rate, da/dN [mm/cycle]
=
I-l>

10° -

107 b—=—1 ' I 1 '

5 10 20 50
AK, Stress Intensity Range, MPavm
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10°°

Fatigue crack growth
rates for a ductile
pressure vessel steel
(the Paris equation)

10

10°°

da

d—N=C(AK)

10°°

The da/dN-AK curve is the
fatigue material curve
Independent of the geometry,
I.e. the same curve for all
geometrical crack-body

10 configurations!

10”’

da/dN. Crack Growth Rate, da/dN [inches/cycle]

Source: N. Dowling, ref(2)



Instability
Kmax = KIc

I:,max = I:)o

)

©

2 Intermediate
(@)

2 da

% —('E\l- = C(AK)M
<

©

Threshold

AKip,

AK (log scale)
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For simplicity reasons the
complete fatigue crack
growth rate is usually
approximated by three

linear pieces with the two
of them being vertical

limiting asymptotes.



Paris’ equation constants for steel materialsat R =0

i . Ferritic-Pearlitic Steel:
.
10—6 :— 252 da |
2 ~S = 69x10 (AK)™
% O 415 dN
9 = "
£ S Martensitic Steel:
9 o
IS 5 da _ 2.25
=107 s —— = 14x10™" (AK)
S : N
E g‘fif Austenitic Stainless Steel:
O
5 § da 1 3.25
\ — = 5.6x107%(AK)
10'8 Ll L [ dN
5 10 100 _ _
AK, MPavm for: da/dN in [m/cycle] and AK in [MPavn]

J. Barsom, “Fatigue Crack Propagation in Steels of Various Yield Strengths”
Journal of Engineering for Industry, Trans. ASME, Series B, Vol. 93, No. 4, 1971, 1190-1196
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Estimation of the Fatigue Crack Propagation Life

Basic Steps:

1. Estimate the initial crack size and shape, a,;
- non-destructive testing - a,
- proof load - a,

2. Estimate the critical crack size ac based on the fracture toughness K., i.e. the crack size
that the component will tolerate when the applied stress reaches its maximum S,

1 Kic
T Y

3. Using the same expression for the stress intensity factor calculate the stress intensity
range AK.

KIC :Smax ﬂ.ac Yc — ac:

AK = AS</raY for R>0
AK =S __~maY for R<O0 (if o <0!)
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4. Substitute AK into fatigue crack growth equation (Paris or Forman)

;jl"\’l‘:c:(AK)m =C(ASV/za)"Y"

5. Integrate the equation above from a = a, to a =a. and determine the number of
cycles, N, necessary to grow the crack from the initial crack size of a, to the critical
size of a.. Thisis the estimated fatigue crack propagation life of given component!

N — da
C(AK)"
_JC da C da
C(AK)"™ ) C(ASvraY)

Note! In most practical cases the integration requires numerical solution due to the
complexity of the geometric factor Y.
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Integrated Paris’ Equation for a Constant Geometric
Factor, Y = const.

jil‘ = C(AK)" =C(ASV/zaY )"

for m=2

2 1 1

= (M= 2)C(ASY)" om/2 _ao(m—z)/z ac(m—z)/z ’

for m=2

1 a.
- s 2 N
CAS“zY a

N

0
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Numerical Integration of the Paris Equation

If the Y factor is not constant a numerical technique has to be applied. The most
often used is the cycle by cycle technique based on the calculation of crack
increments Aa; corresponding to each load cycle. In this case, the infinitesimal
increments da and dN are replaced by finite differences Aa and AN= 1.

N
% - C(AKi)m = C(Asi 7 Yi—l)m; & =4a, + ZAai; Aai = C(Asi\/ﬂai—lYi)mANi
i i=1
N, =0 Aa, =0 8 = dy,
N,=1 AN, =1; Aa, :C(ASl T a, Yo)m , & =8, +Aa;

N,=1 AN, =1 Aa, =C(A52 ma, Yl) , A, =a, +Aa,; Calculations have to be
o carried out for each cycle !!
Ny =15 AN, =1; Aa, =C(AS;\[7a,Y,) ; a =a,+Aay;

N, =1 AN, =1 Aa, =C(AS,\[7a,Y; ) ; a, =a,+Aa,;

N, =1 AN, =1 Aa, =C(AS,\J7a,Y,,) ; & =a+Aa;

until a <a,
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Subsequent stages of fatigue life prediction method based on the crack
growth analysis

Analysis of external forces acting on the structure and the component in question (a),
Analysis of internal loads in chosen cross section of a component ( b),
Selection of individual welded joints in the structure (c),
|dentification of appropriate nominal or reference stress history (d),
Extraction of stress cycles (rainflow counting) or reversals from the stress history
(Fig.e),

e Determination of the stress intensity factor (i.e. the factor Y) for postulated or existing

crack,

- indirect method (Fig.f):

» analyze un-cracked weldment and determine the stress field, o(x,y), in the
prospective crack plane; normalize the calculated stress distribution with respect to
the nominal or any other reference stress, i.e. o(X,y)/on,

» choose appropriate weight function,
calculate stress intensity factor

» determine the stress or displacement field near the crack, or the strain energy
release rate,

» calculate stress intensity factor using.

e Determination of crack increments for each stress cycle (Fig. h),

e Determination of the number of cycles, N, necessary to grow the crack from its initial
size, ap, up to the final size, a.

A summary of necessary input data and procedures used in the, da/dN - AK, approach
to fatigue life estimation is also presented in the Figure.
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Example: A very wide SAE 1020 cold-rolled thin plate is subjected to constant amplitude uni-axial cyclic
loads that produce nominal stresses varying from S, ,,=200MPa (29ksi) to S,,;,=-50 MPa (-7.3ksi). The
monotonic properties for this steel are 5,=630 MPa (91 ksi), 6,,=670 MPa (97 ksi), E=207000 MPa
(30000 ksi), K, =104 MPavm (95 ksivin). What fatigue life would be attained if an initial through-thickness
edge crack existed and was 1 mm (0.04 in) in depth?

A I I S I A
The fatigue crack growth data are:
AKin=0=6 MPavm, and Paris’ equation
parameters C=6.9x10-1? and m=3. A

Smax

AN
V VoV

Ve,

Stress

2]

W >>a

BN
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A. What is the stress intensity factor expression?

Semi-infinite plate with an edge crack.

Kia =S VTa-Y =5, rxax1.12

B. Is Linear Elastic Fracture Mechanics

(LEFM) applicable?

Nominal stress level :
S, <0.80, =0.8x630=504MPa -YES!

Plastic zone size:

K =S _~ra-Y =2004/7x0.001x1.12=12.6 MPay/m

2 2
- [Kmax] :1(%j ~0.0000635m = 0.0635mm

b 2n\ o, T

r
L = 0.0635 <%=O.125 —YES!

a 1
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C. The effective stress range

AS=S_.—-S. for S. >0

AS =S, for S.. <O
S« =200MPa and S_. =-50MPa
thus

AS =S__ =200MPa

D. Is the Paris equation applicable?

Paris equation is valid for AK > AK, !
Smallest AK = AK, occurs for a=a, =0.00Im.

AK, = AS [ra,Y = 200+/7 x0.001x1.12 =12.6 MPay/m
AK, =12.6 > AK, =6MPay/m —YES, Paris equation is applicable!
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E. What is the critical/final crack size?

E. Integration of the Paris equation

Analytical integration is possible because Y= const.

da
dN

a. a,

— = C(AK)" =C(ASV/zaY )"

ac

Kc = Kfinal = Smax ﬂacY
2 2
a, 1K _1 104 =0.068m =68 mm
w\ S, ., xY 7w\ 200x1.12

da

N da _J da ~ 1 J
C(AK)" ) C(aSzay )" C-AS™-z"™*) a2 .y"
3

8

for m=2 and Y = const

1

N = 2 1]
_(m—Z)-C°(AS°Y)m-7z'm/2 ao(m-2)/2 ac(m_z)/z ’

2

1
N =
(3-2)-6.9x10-12-(200-1.12)* - z*"* [0,001@—&/2

1 1
= 4631{ ao(m-z)/z - ac(m-z)/z } = 4631

© 2010 Grzegorz Glinka. All rights reserved.
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0.0316 0.2608
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1
0.068¢22

}: 4631[31.645 — 3.834] =128792 cycles



X Fatigue Crack Growth under Variable Amplitude Loading:

K.

K

1min

2max [
Imax

M @
Kimin

time

da/dN

(c)
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N

the retardation effect

da m
—=C(AK

an = C 146

da

—=Tf(AK /K
dN ( max)



Jc
_/

R

(kg/mm?)

A WWVWWWWW Sm=82 Sg=33

B over 10oad Spgx =192
C /\M/\/\ﬂ/\/\/\/\l\ over ioad (0) Smax =192

O 100 200 300 400 500
— 9 number of kilocycles

A schematic illustration of transient crack growth dur-
ing constant amplitude fatigue (A) and during variable amplitude
loading involving single tensile overloads (C) or tensile-compressive
overload sequences (B). The open circles represent the crack length
locations at which each variable amplitude sequence is applied.



Evolution of the crack tip plastic zone ahead of
a fatigue crack & crack tip closure

A A A A A
n n n n
) ) ) )
o s| /B 8 & D
& 7 7 7
- - C | -
O Time, t O Time, t 0" Time, t O Time, t
Crack , : Crack
_ _ 7 ' i
Crack tip Crack tip Extended crack Crack tip
open starts to close tip closure starts to open
Crack tip it
plastic zone e ’ ot

Envelope of plastically
deformed material in the
wake of a growing crack
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The stress-strain evolution and the monotonic
and plastic zone ahead of a fatigue crack tip

Stress, ©

n

O'/ Strain,sr
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Monotonic plastic zone

Stress

2
1k
‘ An| o

ys

Cyclic plastic zone




The effect of the crack tip closure

A
R — Kmin
4 Kmax
5 K
2 _ opn
E y Kmax
g AK
£ U — eff
g AK
? or
u=1=r
1-R
0 Time, t g
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Fatigue Growth of Corner Cracks in a Lug Subjected to
a VA Loading History

2W

A
v

o(x)

v

atr

Experimental data from: Jong-Ho Kim, Soon-Bok Lee, Seong-Gu Hong, Int. Journal of Fatigue, vol. 40, 2003
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The VA Load/Stress History

The Lug Loading Histories, Py.,=21 kN

100% Clipping

20
90% Clipping

18
H 80% Clipping

16

Load/Force [KN]
)

0 500

1000 1500

No. of Reversals

2000
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Calculations vs. Experiment

Crack length [mm]

Fatigue life for 80% and 100% Clipped Loading History+Load Shedding: Al7050 T7

257"« 80% Clipped Experimental
——80% Corner+EdgeRestrained+Shedding_SP=A045B023g065 ®
@
2077 e 100% Clipped Experimental e °
S
4
—=—100% Corner+EdgeRestrained+Shedding SP=A043B0182q065 N / 8°
® 4
15 5 (4
. H
:O
10 ® »
N
o ¢ &
L
N f/’ -
_&) ——
9 [
O T T T
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of blocks

Experimental data from: Jong-Ho Kim, Soon-Bok Lee, Seong-Gu Hong, Int. Journal of Fatigue, vol. 40, 2003
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Crack Shape Evolution; quarter circular initial crack

Depth,b [mm]

Predicted vs. Measured Crack Shape Evolution in the Lug,

L Predicted vs. Mesured Crack Shape Evolution in the Lug,
100% Clipping

80% Clipping;

”04) 10 ¢

. *
TS
¢ *
* 9 *
— . .
i .
>
o o * 8 * ~
>
. * *
¢ . ¢ — .
* 7 * . '3
* * L 4 * *
Ml . . .

Depth, b, [mm]
(6]
*
<
o
Lo*]

Pz
~
/
,/.‘“’)
r./b’

ARS
*
rososd *
,4—0»’0”)
e

7 8 9 10 0 1 2 3 4 5

Surface, a [mm] Surface, a, [mm]

o 3eeo—To |

Experimental data from: Jong-Ho Kim, Soon-Bok Lee, Seong-Gu Hong, Int. Journal of Fatigue, vol. 40, 2003
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Weight Function for Arbitrary Planar Cracks
KAi =m, (X,y;P)

P2 : JL.+T,
- 2

Pi(X,y)

I'. - inverted contour of
the crack front;

I',, - inverted contour of
the external boundary;

Ppjaj - distance between
the point load P and point
A on the crack front

As
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F

.
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D

T=FD/2

. Location of maximum
shear stress

D=18.5 mm, d=4 mm

Fig. 10. Geometry and dimensions of the spring
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Relative dimensions of the inclusion (d=20-30 pm) and the final
crack size (2a;= 700 pm)




2-D Stress Field in the Spring Critical Cross Section and the Location
of the Initial Crack (non-metallic inclusion)

D
167 1F5 sFD 8F
Gref = Gtorque = 3 = 3 = 3 = 4625 2
zd zd zd zd R
(o)
o. =1.550
O-B = 100.I’ef/ \
B | 0 time, t
O, = O':I'4O-ref | / Op = 1'Oo-ref
o, =0.850, A 5
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Edge of the
Cross section

N; = 5,296,900 cycles

SEAANAY

JJ

aavivi

— Boundary
— Start
1000000
2000000
—— 3000000
—— 4000000
— 5000000
——5100000
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— 5250000
—— 5270000
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5296000
— 5296900

-0,25 -C.

/N
@

[\
o

25

e

N

I
\OJ

<o)
N

n o8
“U. 29

Fatigue crack growth; d=0.03x0.02 mm, depth 0.25 mm, o¢ ,,,= 1030 MPa, o¢ ;= 390 MPa
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Main steps in fatigue design — flow chart

Data analysis

Designing Stress relive!
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