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10-10 10-8 10-6 10-4 10-2 100 102 

Specimens Structures Atoms Dislocations Crystals 

Size Scale for Studying Fatigue 

Understand the physics on this scale 

Model the physics on this scale 

Use the models on this scale 
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The Fatigue Process 

 Crack nucleation 
 Small crack growth in an elastic-plastic 

stress field 
Macroscopic crack growth in a nominally 

elastic stress field 
 Final fracture 
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Mechanisms Crack Nucleation 

Nucleation in Slip Bands inside Grain 
Nucleation at Grain Boundaries 
Nucleation at Inclusions 
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1903 - Ewing and Humfrey 

Cyclic deformation leads 
to the development of slip 
bands and fatigue cracks 

N = 1,000 N = 2,000 

N = 10,000 N = 40,000 Nf = 170,000 
Ewing, J.A. and Humfrey, J.C. “The fracture of metals under repeated alterations of stress”,  
Philosophical Transactions of the Royal Society, Vol. A200, 1903, 241-250 
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Crack Nucleation 
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Slip Band in Copper 

Polak, J. Cyclic Plasticity and Low Cycle Fatigue Life of Metals, Elsevier, 1991  
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Slip Band Formation 

Loading Unloading 

Extrusion 

Undeformed 
material 

Intrusion 
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Slip Bands 

Ma, B-T and Laird C. “Overview of fatigue behavior in copper sinle crystals –II Population, size, distribution and growth 
Kinetics of stage I cracks for tests at constant strain amplitude”, Acta Metallurgica, Vol 37, 1989, 337-348 
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2124-T4 Cracking in Slip Bands 

N = 60 

N = 2000 N = 1200 

N = 300 N = 240 
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Crack at Particle 

Material:  BS L65 Aluminum 

Loading:  63 ksi, R=0 for 
500,000+ cycles, followed by  68 
ksi, R=0 to failure.  Cracks found 

during 68 ksi loading. 

S. Pearson, “Initiation of Fatigue Cracks in Commercial Aluminum Alloys and the Subsequent Propagation  

of Very Short Cracks,”  RAE TR 72236, Dec 1972. 
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7075-T6 Cracking at Inclusion 
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Subsurface Crack Initiation 

Y. Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, 2002 
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Fatigue Limit and Strength Correlation 
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From Forrest, Fatigue of Metals, Pergamon Press, London, 1962 
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Crack Nucleation Summary 

 Highly localized plastic deformation 
 Surface phenomena 
 Stochastic process 
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100 µm 

bulk surface 

10 µm 

surface 

20-25 austenitic steel in symmetrical push-pull fatigue  
(20°C, ∆εp/2= ±0.4%) : short cracks on the surface and in the bulk 

 

Surface Damage 

From Jacques Stolarz, Ecole Nationale Superieure des Mines 
Presented at LCF 5 in Berlin, 2003  
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Stage I Stage II

loading direction 

free 
surface 

Stage I and Stage II 
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Stage I Crack Growth 

Single primary slip system

individual grain

near - tip plastic zone

S

S
Stage I crack is strongly affected by slip 
characteristics, microstructure 
dimensions, stress level, extent of near 
tip plasticity 
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Small Cracks at Notches 

D a 
crack tip plastic zone 

notch plastic zone 

notch stress field 

Crack growth controlled by the notch plastic strains 
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Small Crack Growth 

1.0 mm 

N = 900 

Inconel 718 
∆ε = 0.02 
Nf = 936 
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Crack Length Observations 
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Crack - Microstructure Interactions 

Akiniwa, Y., Tanaka, K., and Matsui, E.,”Statistical Characteristics of Propagation of Small Fatigue Cracks in Smooth  
Specimens of Aluminum Alloy 2024-T3, Materials Science and Engineering, Vol. A104, 1988, 105-115 
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Strain-Life Data 
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Most of the life is spent in microcrack growth in the  
plastic strain dominated region 



Physics of Fatigue  © 2004-2014 Darrell Socie, All Rights Reserved                                25 of 73 
 

Stage II Crack Growth 

Locally, the crack grows in shear  
Macroscopically it grows in tension 
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Long Crack Growth 

Plastic zone size is much larger than the material  
microstructure so that the microstructure does not  
play such an important role. 
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Material strength does not play a major role in fatigue crack growth 

Crack Growth Rates of Metals 
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Maximum Load 

monotonic plastic zone 

σ 

Stresses Around a Crack 

σ 

ε 
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Stresses Around a Crack (continued) 

Minimum Load σ 

ε 

cyclic plastic zone 

σ 
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Crack Closure 

S = 250 

b 

S = 175 

c 

S = 0 

a 
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Crack Opening Load 
Damaging portion of loading history 

Nondamaging portion of loading history 

Opening load 
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Mode I
opening

Mode II
in-plane shear

Mode III
out-of-plane shear

Mode I, Mode II, and Mode III 
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crack growth direction

10 µm

slip bands shear stress 

Mode II Growth 



Physics of Fatigue  © 2004-2014 Darrell Socie, All Rights Reserved                                35 of 73 
 

1045 Steel - Tension 
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Fatigue Life, 2N f 
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Things Worth Remembering 

 Fatigue is a localized process involving the 
nucleation and growth of cracks to failure. 

 Fatigue is caused by localized plastic 
deformation. 

Most of the fatigue life is consumed growing 
microcracks in the finite life region 

 Crack nucleation is dominate at long lives. 
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Fatigue, How and Why 

 Physics of Fatigue 
Material Properties 
 Introduction to eFatigue 
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Characterization 

 Stress Life Curve 
 Fatigue Limit 

 Strain Life Curve 
Cyclic Stress Strain Curve 

 Crack Growth Curve 
 Threshold Stress Intensity 
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Bending Fatigue 
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SN Curve 
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Fatigue Strength 

105 106 107 108 109 

2014-T4 290 235 186 152 138 
2024-T4 297 214 166 145 138 
6061-T6 186 152 117 104 90 
7075-T6 276 200 166 152 145 

Fatigue Life 
Alloy 
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6061-T6 Aluminum Test Data 

Sharpe et. al. Fatigue Design of Aluminum Components and Structures , 1996  
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SN Curve for Steel 
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The fatigue limit is usually only found in steel laboratory specimens 
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Very High Cycle Fatigue of Steel 
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Fatigue Damage 
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Fatigue Limit Strength Correlation 
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From Forrest, Fatigue of Metals, Pergamon Press, London, 1962
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Fatigue Limit Strength Correlation 
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Strain Controlled Testing 
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Cyclic Hardening / Softening 
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Stable Hysteresis Loop 

∆σ 

∆ε 

∆εe ∆εp 

Hysteresis loop 
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Strain-Life Data    σ − ε 
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During cyclic deformation, the material deforms on a path  
described by the cyclic stress strain curve 
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Cyclic Stress Strain Curve 
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Strain-Life Data    ∆ε - 2Nf 
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Elastic and Plastic Strain-Life Data 
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Strain-Life Curve 

10-5 

10-4 

0.001 

0.01 

0.1 

1 

Reversals, 2Nf 

St
ra

in
 A

m
pl

itu
de

 

100 101 102 103 104 105 106 107 

c
f

'
f

b
f

'
f )N2()N2(

E2
ε+

σ
=

ε∆

c 

b 

'
fε

E

'
fσ

2Nt 

∆ε
 

2 



Physics of Fatigue  © 2004-2014 Darrell Socie, All Rights Reserved                                57 of 73 
 

Transition Fatigue Life 

From Dowling, Mechanical Behavior of Materials, 1999 
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Crack Growth Testing 
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Stress Concentration of a Crack 

2 a 

ρ 

ρ
+=

a21KT

a ~ 10-3 

for a crack 

ρ ~ 10-9 

KT ~ 2000 

appliedlocal 2000σ=σ

Traditional material properties like tensile strength  
are not very useful for cracked structures 
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Stress Intensity Factor 

σ 

σ 

2a 

aK πσ=

K characterizes the magnitude of the  
stresses, strains, and displacements in the  
neighborhood of a crack tip 

Two cracks with the same K will have  
the same behavior 
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Crack Growth Measurements 
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Crack Growth Data 
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Threshold Region 

threshold stress intensity 
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Threshold Stress Intensity 

From Dowling, Mechanical Behavior of Materials, 1999 
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Non-propagating Crack Sizes 
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Small cracks are frequently semielliptical surface cracks 
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Non-propagating Crack Sizes 
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Stable Crack Growth 
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Crack Growth Data 
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Ferritic-Pearlitic Steel: 

Martensitic Steel: 

Austenitic Stainless Steel: 

Barsom, “Fatigue Crack Propagation in Steels of Various Yield Strengths” 
Journal of Engineering for Industry, Trans. ASME, Series B, Vol. 93, No. 4, 1971, 1190-1196  
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Aluminum Crack Growth Rate Data 

Sharp, Nordmark and Menzemer, Fatigue Design of Aluminum Components and Structures, 1996 
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Crack Growth Data 
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Virkler, Hillberry and Goel, “The Statistical Nature of Fatigue Crack Propagation”, Journal of Engineering Materials  
and Technology, Vol. 101, 1979, 148-153 
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Things Worth Remembering 

Method 
Stress-Life 
Strain-Life 

Crack Growth 

Physics 
Crack Nucleation 

Microcrack Growth 
Macrocrack Growth 

Size 
0.01 mm 

0.1 - 1 mm 
> 1mm 
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Fatigue, How and Why 

 
 Physics of Fatigue 
Material Properties 
 Introduction to eFatigue 
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eFatigue.com 



Physics of Fatigue 
 
 


	Physics of Fatigue�
	Contact Information
	Fatigue, How and Why
	Size Scale for Studying Fatigue
	The Fatigue Process
	Mechanisms Crack Nucleation
	1903 - Ewing and Humfrey
	Crack Nucleation
	Slip Band in Copper
	Slip Band Formation
	Slip Bands
	2124-T4 Cracking in Slip Bands
	Crack at Particle
	7075-T6 Cracking at Inclusion
	Subsurface Crack Initiation
	Fatigue Limit and Strength Correlation
	Crack Nucleation Summary
	Surface Damage
	Stage I and Stage II
	Stage I Crack Growth
	Small Cracks at Notches
	Small Crack Growth
	Crack Length Observations
	Crack - Microstructure Interactions
	Strain-Life Data
	Stage II Crack Growth
	Long Crack Growth
	Crack Growth Rates of Metals
	Stresses Around a Crack
	Stresses Around a Crack (continued)
	Crack Closure
	Crack Opening Load
	Mode I, Mode II, and Mode III
	Mode I Growth
	Mode II Growth
	1045 Steel - Tension
	1045 Steel - Torsion
	Things Worth Remembering
	Fatigue, How and Why
	Characterization
	Bending Fatigue
	SN Curve
	Fatigue Strength
	6061-T6 Aluminum Test Data
	SN Curve for Steel
	Very High Cycle Fatigue of Steel
	Fatigue Damage
	Fatigue Limit Strength Correlation
	Fatigue Limit Strength Correlation
	Strain Controlled Testing
	Cyclic Hardening / Softening
	Stable Hysteresis Loop
	Strain-Life Data    s - e
	Cyclic Stress Strain Curve
	Strain-Life Data    De - 2Nf
	Elastic and Plastic Strain-Life Data
	Strain-Life Curve
	Transition Fatigue Life
	Crack Growth Testing
	Stress Concentration of a Crack
	Stress Intensity Factor
	Crack Growth Measurements
	Crack Growth Data
	Threshold Region
	Threshold Stress Intensity
	Non-propagating Crack Sizes
	Non-propagating Crack Sizes
	Stable Crack Growth
	Crack Growth Data
	Aluminum Crack Growth Rate Data
	Crack Growth Data
	Things Worth Remembering
	Fatigue, How and Why
	eFatigue.com
	Physics of Fatigue��

