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B Physics of Fatigue
B Material Properties
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Size Scale for Studying Fatigue

Atoms Dislocations Crystals Specimens Structures

1010 108 10 104 102 100 102

- >

Understand the physics on this scale

- >

Model the physics on this scale

——-

Use the models on this scale
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i The Fatigue Process

B Crack nucleation

B Small crack growth in an elastic-plastic
stress field

B Macroscopic crack growth in a nominally
elastic stress field

H Final fracture
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i Mechanisms Crack Nucleation

Physics of Fatigue

Nuc
Nuc
Nuc

eation in Slip Bands inside Grain
eation at Grain Boundaries
eation at Inclusions
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Cyclic deformation leads
to the development of slip
bands and fatigue cracks

N = 10,000 N = 40,000 N; = 170,000
Ewing, J.A. and Humfrey, J.C. “The fracture of metals under repeated alterations of stress”,
Philosophical Transactions of the Royal Society, Vol. A200, 1903, 241-250

Physics of Fatigue © 2004-2014 Darrell Socie, All Rights Reserved 6 of 73




Crack Nucleation
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Slip Band in Copper

Polak, J. Cyclic Plasticity and Low Cycle Fatigue Life of Metals, Elsevier, 1991
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Physics of Fatigue

Loading

4
/7
7 7
¢ 7
R4 .
Rt Extrusion
,/
//
,2»" Undeformed
P material
4/
Intrusion
Unloading

Slip Band Formation
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Slip Bands

Sum
|t s e IO
Ma, B-T and Laird C. “Overview of fatigue behavior in copper sinle crystals —II Population, size, distribution and growth
Kinetics of stage | cracks for tests at constant strain amplitude”, Acta Metallurgica, Vol 37, 1989, 337-348
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Crack at Particle

Material: BS L65 Aluminum

Loading: 63 ksi, R=0 for
500,000+ cycles, followed by 68
ksi, R=0 to failure. Cracks found

during 68 ksi loading.

X 1000

S. Pearson, “Initiation of Fatigue Cracks in Commercial Aluminum Alloys and the Subsequent Propagation
of Very Short Cracks,” RAE TR 72236, Dec 1972.
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/075-T6 Cracking at Inclusion
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Subsurface Crack Initiation

Y. Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, 2002
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Fatigue Limit and Strength Correlation
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From Forrest, Fatigue of Metals, Pergamon Press, London, 1962
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i Crack Nucleation Summary

B Highly localized plastic deformation
B Surface phenomena
M Stochastic process
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Surface Damage

v

20-25 austenitic steel in symmetrical push-pull fatigue
(20°C, Ag,/2=10.4%) : short cracks on the surface and in the bulk

From Jacques Stolarz, Ecole Nationale Superieure des Mines
Presented at LCF 5 in Berlin, 2003
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Stage | and Stage |l

loading direction

A

free /

surface

-/

< )i >

Stage | Stage 11
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Stage | Crack Growth

N

Stage | crack is strongly affected by slip

characteristics, microstructure

L near - tip plastic zone dimensions, stress level, extent of near
tip plasticity

[] individual grain
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Small Cracks at Notches

notch plastic zone

notch stress field

—

crack tip plastic zone

\

Crack growth controlled by the notch plastic strains
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Small Crack Growth
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Crack Length Observations
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Crack - Microstructure Interactions
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Crack Length, mm
Akiniwa, Y., Tanaka, K., and Matsui, E.,”Statistical Characteristics of Propagation of Small Fatigue Cracks in Smooth
Specimens of Aluminum Alloy 2024-T3, Materials Science and Engineering, Vol. A104, 1988, 105-115
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Strain-Life Data
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Physics of Fatigue

Reversals, 2N,

Most of the life is spent in microcrack growth in the
plastic strain dominated region
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i Stage Il Crack Growth

Y
7

| N\

Locally, the crack grows in shear
Macroscopically it grows in tension
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Long Crack Growth

Plastic zone size is much larger than the material
microstructure so that the microstructure does not
play such an important role.
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Crack Growth Rates of Metals
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Material strength does not play a major role in fatigue crack growth
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Stresses Around a Crack

Maximum Load G 4
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Stresses Around a Crack (continued)

)
/

Minimum Load

” cyclic plastic zone
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Crack Closure

S=0
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Crack Opening Load

Damaging portion of loading history
A

\/
Nondamaging portion of loading history
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Mode |, Mode Il, and Mode Il

Mode | Mode II Mode Il
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Mode | Growth

crack growth directon ——»
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Mode Il Growth

<€«—— crack growth direction
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1045 Steel - Tension
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1045 Steel - Torsion
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i Things Worth Remembering

M Fatigue is a localized process involving the
nucleation and growth of cracks to failure.

B Fatigue is caused by localized plastic
deformation.

B Most of the fatigue life is consumed growing
microcracks in the finite life region

B Crack nucleation is dominate at long lives.
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i Fatigue, How and Why

B Physics of Fatigue
B Material Properties
M Introduction to eFatigue
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i Characterization

B Stress Life Curve
B Fatigue Limit
B Strain Life Curve
B Cyclic Stress Strain Curve

B Crack Growth Curve
B Threshold Stress Intensity
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Bending Fatigue

stress amplitude

FAWA
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stress range

Bending stress:
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SN Curve

Stress Amplitude, MPa

Testing time
@ 30 Hz

Physics of Fatigue
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Fatigue Strength

Fatigue Life
Alloy 105 108 107 108 109
2014-T4 290 235 186 152 138
2024-T4 297 214 166 145 138
6061-T6 186 152 117 104 90
7075-T6 276 200 166 152 145

Physics of Fatigue
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6061-T6 Aluminum Test Data
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Sharpe et. al. Fatigue Design of Aluminum Components and Structures , 1996
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SN Curve for Steel
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The fatigue limit is usually only found in steel laboratory specimens
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Very High Cycle Fatigue of Steel
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Fatigue Damage
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Fatigue Limit Strength Correlation
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From Forrest, Fatigue of Metals, Pergamon Press, London, 1962
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Fatigue Limit Strength Correlation

Physics of Fatigue
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Strain Controlled Testing
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Cyclic Hardening / Softening

Physics of Fatigue

1 3rd
1st reversal

(a) Fully annealed
Ae = 0.0084
2N, = 8060 reversals

(b) Partially annealed
Ae =0.0078
?N, = 4400 reversals

i:;;’ {c) Cold worked
e 2 Ae = 0.0099
2N, = 2000 reversals
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i Stable Hysteresis Loop

Hysteresis loop
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Strain-Life Data o —¢
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During cyclic deformation, the material deforms on a path
described by the cyclic stress strain curve
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Cyclic Stress Strain Curve
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Physics of Fatigue
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Strain-Life Data Ae - 2N;
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Elastic and Plastic Strain-Life Data
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Strain-Life Curve
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Transition Fatigue Life
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From Dowling, Mechanical Behavior of Materials, 1999
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i Crack Growth Testing
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i Stress Concentration of a Crack

P
~
|< —) Ky =1+2 \E
«— a —>| p
K~ 2000

for a crack

a~ 10-3 Olocal = 2000 cyapplied

p~10-°

Traditional material properties like tensile strength
are not very useful for cracked structures
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i Stress Intensity Factor

o K=o0c.ma

K characterizes the magnitude of the
stresses, strains, and displacements in the
neighborhood of a crack tip

|.f.| Two cracks with the same K will have
2a the same behavior
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i Crack Growth Measurements

LI & .

Crack size
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Crack Growth Data
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i Threshold Region

AK.,>Ac,/ma f(ij

T A A W
threshold stress intensity T
flaw shape
flaw size

operating stresses
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Threshold Stress Intensity

Physics of Fatigue

AKy, Stress Intensity Threshold, ksifin
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From Dowling, Mechanical Behavior of Materials, 1999
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i Non-propagating Crack Sizes

Small cracks are frequently semielliptical surface cracks
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i Non-propagating Crack Sizes
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Stable Crack Growth
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Crack Growth Data
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Barsom, “Fatigue Crack Propagation in Steels of Various Yield Strengths”

Journal of Engineering for Industry, Trans. ASME, Series B, Vol. 93, No. 4, 1971, 1190-1196
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Aluminum Crack Growth Rate Data
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Sharp, Nordmark and Menzemer, Fatigue Design of Aluminum Components and Structures, 1996
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Crack Growth Data
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Virkler, Hillberry and Goel, “The Statistical Nature of Fatigue Crack Propagation”, Journal of Engineering Materials
and Technology, Vol. 101, 1979, 148-153
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i Things Worth Remembering

Method Physics Size
Stress-Life Crack Nucleation 0.01 mm
Strain-Life Microcrack Growth 0.1-1mm

Crack Growth Macrocrack Growth >1mm
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i Fatigue, How and Why

B Physics of Fatigue
B Material Properties
M Introduction to eFatigue
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eFatigue.com
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Fatigue failures are always a consideration for any structure that is dynamically or cyclically loaded. The effective use of the appropriate fatigue
technology and analysis is an essential part of assuring the durability of all mechanical components.

Fatigue technology and fatigue software used to only be used by experts with costs to match. No longer. Designed and supported by the fatigue
group at the University of lllinois, the FatigueCalculator website contains all of the technologies and tools needed for accurate fatigue
assessments with an interface that is easy for the non-expert to navigate.

Databases for material properties and geometry factors are also included with the various FatigueCalculators. Learn by Example and a
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served.

wmance, merchantability, fitne:
cial, incidental, nsequential damages resulting from the use or mi:
information on this web site is assumed by user.

Copyright €
a particular purpose, or any other wamanties whether expressed or implied.
of this information. The entire risk from using the results obtained from the

Physics of Fatigue

© 2004-2014 Darrell Socie, All Rights Reserved 73 of 73



Physics of Fatigue

., S



	Physics of Fatigue�
	Contact Information
	Fatigue, How and Why
	Size Scale for Studying Fatigue
	The Fatigue Process
	Mechanisms Crack Nucleation
	1903 - Ewing and Humfrey
	Crack Nucleation
	Slip Band in Copper
	Slip Band Formation
	Slip Bands
	2124-T4 Cracking in Slip Bands
	Crack at Particle
	7075-T6 Cracking at Inclusion
	Subsurface Crack Initiation
	Fatigue Limit and Strength Correlation
	Crack Nucleation Summary
	Surface Damage
	Stage I and Stage II
	Stage I Crack Growth
	Small Cracks at Notches
	Small Crack Growth
	Crack Length Observations
	Crack - Microstructure Interactions
	Strain-Life Data
	Stage II Crack Growth
	Long Crack Growth
	Crack Growth Rates of Metals
	Stresses Around a Crack
	Stresses Around a Crack (continued)
	Crack Closure
	Crack Opening Load
	Mode I, Mode II, and Mode III
	Mode I Growth
	Mode II Growth
	1045 Steel - Tension
	1045 Steel - Torsion
	Things Worth Remembering
	Fatigue, How and Why
	Characterization
	Bending Fatigue
	SN Curve
	Fatigue Strength
	6061-T6 Aluminum Test Data
	SN Curve for Steel
	Very High Cycle Fatigue of Steel
	Fatigue Damage
	Fatigue Limit Strength Correlation
	Fatigue Limit Strength Correlation
	Strain Controlled Testing
	Cyclic Hardening / Softening
	Stable Hysteresis Loop
	Strain-Life Data    s - e
	Cyclic Stress Strain Curve
	Strain-Life Data    De - 2Nf
	Elastic and Plastic Strain-Life Data
	Strain-Life Curve
	Transition Fatigue Life
	Crack Growth Testing
	Stress Concentration of a Crack
	Stress Intensity Factor
	Crack Growth Measurements
	Crack Growth Data
	Threshold Region
	Threshold Stress Intensity
	Non-propagating Crack Sizes
	Non-propagating Crack Sizes
	Stable Crack Growth
	Crack Growth Data
	Aluminum Crack Growth Rate Data
	Crack Growth Data
	Things Worth Remembering
	Fatigue, How and Why
	eFatigue.com
	Physics of Fatigue��

