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Introduction
Although most engineering structures and machine components are designed such that

the nominal stress remains elastic (Sn< ys) stress concentrations often cause
plastic strains to develop in the vicinity of notches where the stress is elevated due
to the stress concentration effect. Due to the constraint imposed by the elastically
stresses material surrounding the notch-tip plastic zone deformation at the notch
root is considered strain controlled.

The basic assumption of the strain-life fatigue analysis approach is that the fatigue
damage accumulation and the fatigue life to crack initiation at the notch tip are the
same as in a smooth material specimen (see the Figure) if the stress-strain states in
the notch and in the specimen are the same. In other words:

The local strain approach relates deformation occurring in the immediate vicinity of a
stress concentration to the remote or local pseudo-elastic stresses and strains using
the constitutive response determined from fatigue tests on simple laboratory
specimens (i.e. the cyclic stress-strain curve and the strain-life curve.

From knowledge of the geometry and imposed loads on notched components, the local
stress-strain histories at the tip of the notch must be determined (Neuber or ESED
method).

Fatigue damage must be calculated for each cycle of the local stress-strain history
(hysteresis loops, linear damage summation)
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a) Specimen

b) Notched component

yy

yy
x

y

z

yy

'
'2 2

2
bf

f f fN N c
E

lo
g

(
/2

)

log (2Nf)

f

0

The Similitude Concept states that if
the local notch-tip strain history in the
notch tip and the strain history in the
test specimen are the same, then the
fatigue response in the notch tip region
and in the specimen will also be the
same and can be described by the
material strain-life ( -N) curve.

yy

Fi

Plastic zone

f/E

The Basic Concept of the -N Method

© 2010 Grzegorz Glinka.  All rights reserved. 3



a)

b)

a) smooth specimen
representing the state of affairs
at he notch tip of a notched
body;  b) smooth specimen
representing the state of affairs
at the weld toe in a weldment
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The stepwise - N procedure for estimating fatigue life (can
be summarised as follows - see the Figure below).

• Analysis of external forces acting on the structure and the component in question (a),

• Analysis of internal loads in chosen cross section of a component (b),

• Selection of critical locations (stress concentration points) in the structure (c),

• Calculation of the elastic local stress, peak, at the critical point (usually the notch tip, d)

• Assembling of the local stress history in form of the form of peak and valley sequence (f),

• Determination of the elastic-plastic response at the critical location (h),

• Identification (extraction) of cycles represented by closed stress-strain hysteresis loops (h, i),

• Calculation of fatigue damage (k),

• Fatigue damage summation (Miner- Palmgren hypothesis, l),

• Determination of fatigue life (m) in terms of number of stress history repetitions, Nblck, (No. of
blocks) or the number of cycles to fatigue crack initiation, N.

The details concerning many other aspects of that methodology are discussed below.
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Because the crack initiation period occupies major part of a fatigue life of a smooth
specimen the life of the specimen is assumed to be equal to the fatigue crack initiation life.
Therefore, only the fatigue crack initiation life at the notch tip can be estimated from the
fatigue data obtained form a smooth specimen subjected to the same stress-strain history
as that one occurring in the notch tip. The same history means the same magnitudes of all
stress and strain components. If such conditions are satisfied the equality of one stress or
strain component in the notch and the smooth specimen assures that the other
components are the same as well. Therefore, it is possible to use in such a case only one
strain or one stress component as a parameter for fatigue damage calculation and fatigue
life estimation. It means that one component characterizes in those cases the entire stress-
strain state.

However, if the stress-strain state in the notch tip and in the specimen are not the same
calculations based on only one stress or strain component might be inaccurate.

Therefore, it seems important to review the elastic plastic stress-strain behavior of
materials and their mathematical models used in fatigue applications. It is also important to
know the modifications, which should be applied before the uni-axial strain-life ( N)
properties can be used if the stress-strain state in the notch tip is not the same as that one
in the material specimen used for obtaining relevant material properties.
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Information Path for Strength and Fatigue Life Analysis
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Determination of the Stabilized Cyclic Stress-Strain Curve
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Mathematical Expressions Describing the Stress-Strain Curve and
the Shape of the Hysteresis Lop
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The Massing Hypothesis

Massing’s hypothesis states that the stabilised hysteresis loop branch may be
obtained by doubling the basic material stress-strain curve.

-cyclic stress – strain curve (amplitudes)

- doubled stress – strain curve (ranges)
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Monotonic and cyclic stress-strain curves for various
metallic materials
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The stress-strain response of metals is often drastically altered due to
repeated loading. The material may:

– Cyclically harden
– Cyclically soften
– Be cyclically stable
– Have mixed behaviour (soften or harden depending on )

• The reason materials soften or harden appears to be related to the
nature and stability of the dislocation substructure of the material.

• For a soft material, initially the dislocation density is low. The density
rapidly increases due to cyclic plastic straining contributing to
significant cyclic strain hardening.

• For a hard material subsequent strain cycling causes a rearrangement
of dislocations, which offers less resistance to deformation and the
material cyclically softens

If the material will cyclically harden

If the material will cyclically soften
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1. Smooth laboratory specimens are used for the
determination of the and - N curves.

2. The data points are obtained at half life of
each specimen to assure that the material is
stabilized.

3. 80% -95% of the specimen life spent to create
a crack up to 0.5 -1 mm deep.
diameter: 6 - 8 mm 6-8mm

Determination of the fatigue strain-life curve
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Determination of the Fatigue Strain-Life Curve
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Fatigue Strain – Life Properties
In 1910, Basquin observed that stress-life (S-N) data could be plotted linearly on a log-log scale.

' (2 )
2

b
f fN

where: 2/  - true stress amplitude; fN2  - reversals to failure (1 rev = ½ cycle);
'
f  - fatigue strength coefficient, b - fatigue strength exponent (Basquin’s exponent)

Parameters f
’ and b are fatigue properties of the material. The fatigue strength coefficient, f

’, is
approximately equal to the true fracture strength at fracture f. The fatigue strength exponent, b,
varies in the range of 0.05 and –0.12.

Manson and Coffin, working independently (1950), found that plastic strain-life data ( p-N) could be
linearized in log-log co-ordinates.

' (2 )
2

p c
f fN

where: 2
p  - plastic strain amplitude;   2Nf - reversals to failure; f

’ - fatigue ductility coefficient
                 c - fatigue ductility exponent

Parameters f
’ and c are fatigue properties of the material. The fatigue ductility coefficient, f

’, is
approximately equal to true fracture ductility (true strain at fracture), f

’. The fatigue ductility exponent,
c, varies in the range of   –0.5 and –0.7.
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CYCLIC PROPERTIES

K - cyclic strength coefficient
n - cyclic strain hardening exponent

ys - cyclic yield strength
E - modulus of elasticity
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The Mean Stress Effect
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Limitations and Physical Interpretation of Mean
Stress Correction Models

Morrow’s model
• The predictions made with Morrow’s mean stress correction model

are consistent with the observations that mean stress effects are
significant at low values of plastic strain, where the elastic strain
dominates.  The correction also reflects the trend that mean
stresses have little effect at shorter lives, where plastic strains are
large.

• However Morrow,s mean stress model incorrectly predicts that the
ratio of elastic to plastic strain range is dependent on mean stress.
This is clearly not true, because the shape of the stress-strain
hysteresis loop does not depend on the mean stress.

• Although Morrow’s mean stress correction model violets the
constitutive relationship, it generally correctly predicts mean stress
effects.
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Limitations and Physical Interpretation of Mean
Stress Correction Models

Manson and Halford model
• Manson and Halford modified both the  elastic and plastic terms of the

strain-life equation to maintain the independence of the elastic-plastic strain
ratio from mean stress.

• This equation tends to predict too much mean stress effect at short lives or
where plastic strains dominate.  At high plastic strains, mean stress
relaxation occurs.

Smith, Watson, and Topper (SWT) model
• Since SWT parameter is in the general form of

it becomes undefined when max is negative ( max < 0).  The physical
interpretation of this approach assumes that no fatigue damage occurs
when the maximum stress is compressive.

max 0ff N
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Stress States in a Notched Body
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Neuber’s Rule The ESED Method
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Neuber’s Rule and the
Ramberg-Osgood curve
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Graphical solution to the Neuber rule and the equation
of the Stress-Strain curve

Cyclic stress-strain curve
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Simulation of Stress-Strain Response at the Notch
Tip (ESED Method) Induced by Cyclic Loading
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Stress-strain response at the notch tip
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The ‘erratic’ relationship between the nominal mean stress Sm
and the local (at the notch tip) mean stress m
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Material Stress-Strain Response
Due to Variable Amplitude
Cyclic Loading
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Strain-Stress Hysteresis Loops vs. “Rainflow Counted”
Cycles
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Stress history

Mathematical Description of Material Stress-Strain Response
Induced by a Variable Amplitude Stress or Strain History
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The linear hypothesis of Fatigue Damage accumulation (the Miner rule)
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Modeling the residual stress effect
2

t r N N
22 22

K S
E

- Neuber’s
rule

r

e

2

22 22
t rK S

E

2

22 22
tK S
E

t rK S
E

tK S
E

e

22
2

22 22
02

E

t r E EK S
d

E
- ESED method

r

E

e

e

2

2
t rK S

E

2

2
tK S
E

tK S
E

t rK S
E

© 2010 Grzegorz Glinka.  All rights reserved. 44



N
om

in
al

st
re

ss
S

Time

B

A
C

Residual Stress Effect on
the Stress-Strain Response
at the Notch Tip

x

peak

St
re

ss

y

S

S r > 0!

0

B
max

m

min

r A

C
r= 0!

m

C

A

B

r> 0!Case 1

r A

0

B

min

max

m

Case 2

m

B

r= 0!

A

r< 0!

r< 0!

C

C

© 2010 Grzegorz Glinka.  All rights reserved. 45



Summary of the Local Strain-Life ( -N) Approach

Advantages:
• The method takes into account the actual stress-strain response of the material due

to cyclic loading.
• Plastic strain, and the mechanism that leads to crack initiation, is accurately

modeled.
• This method can model the effect of the residual mean stresses resulting from the

sequence effect in load histories and the manufacturing residual stresses. This
allows for more accurate damage accumulation under variable amplitude cyclic
loading.

• The -N method can be more easily extrapolated to situations involving complicated
geometries.

• This method can be used in high temperature applications where fatigue-creep
interaction is critical.

• In situations where it is important, this method can incorporate transient material
behavior.

• This method can be used for both low cycle (high strains) and high cycle fatigue (low
strains)

• There is only one essential empirical element in the method, i.e. the correction for
the mean stress effect.
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