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Surveying Made Easy
17711688 1st

1793 12th

<http://www.uzes.net/1600to1800books.htm>
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… Made Easy
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… Made Easy
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Shakespheare Made Easy
Original

Translation

Shakespheare Made Easy, Alan Durband, Hutchinson & Co Ltd, London, 1985
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Seminar Outline

1. Historical background
2. Physics of fatigue 
3. Characterization of materials
4. Similitude ( why fatigue modeling works )
5. Variability
6. Mean stress 
7. Stress concentrations
8. Surface effects
9. Variable amplitude loading 
10. Welded structures 
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19th Century

1829 Albert Repeated Loads
1839 Poncelet “fatigue”
1843 Rankine Stress Concentrations
1860 Wohler Systematic Investigations
1886 Baushinger Cyclic Deformation
1890 Goodman Mean Stresses

1903 Ewing & Humfrey Fatigue Mechanisms
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The first major transportation 
disaster-Versailles accident of 

May 11, 1842

At the dawn of the industrial revolution
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Versailles
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“I have this day to announce to you one of the most 
frightful events that has occurred in modern times. … 
The train of the left bank was unusually long; … from 
1500 to 1800 passengers. On arriving between 
Meudon and Bellevue the axle tree of the first engine 
broke. … The second engine … passed over it, and 
the boiler burst … The carriages arrived of course, 
and passed over the wreck, when six of them were 
… instantly ignited. Three were totally consumed, … 
without the possibility of escape to the unhappy 
inmates, who were locked up … The number of killed 
is variously estimated (between 40 and 80).”

‘The Times’, May 11, 1842
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Early steam engine
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Typical broken axle of the 1840s
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Expert opinions of the time



 
“I never met one which did not present a 
crystallization fracture…”



 
“the principal causes … are percussion, heat and 
magnetism”



 
“the change … may take place instantaneously”



 
“steam can speedily cause iron to become 
magnetic”
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Rankine 1820 - 1872

Trained as a civil engineer
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William Rankine’s second paper



 
Stated that deterioration of axles is gradual 



 
“the fractures appear to have commenced with a 
smooth, regularly-formed, minute fissure, extending 
all round the neck of the journal, and penetrating on 
an average to a depth of half an inch. … until the 
thickness of sound iron in the center became 
insufficient to support the shocks to which it was 
exposed.”



Fatigue Seminar © 2002-2011 Darrell Socie,, All Rights Reserved 16 of 39 

Rankine ...



 
“In all the specimens the iron remained fibrous; 
proving that no material change had taken place in 
the structure”



 
He noted that fractures occurred at sharp corners



 
He recommended that the journals be formed with a 
large curve in the shoulder (which is exactly right!)
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Wöhler 1819 - 1914

Prussian Railway Service

Work done before the development 
of the metallurgical microscope

Critical value of stress below 
which failure will not occur
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Wöhler Tests

Wöhler circa 1850

Fatigue Dynamics circa 2000
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Wöhler Observations



 
Steel will rupture at stress less than the elastic limit if 
the stress is repeated a sufficient number of times



 
Stress range rather than maximum stress 
determines the number of cycles



 
There appears to be a limiting stress range which 
may be applied indefinitely without failure



 
As the maximum stress increases, the limiting stress 
range decreases
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Bauschinger 1834 - 1893

Cyclic Behavior of Materials
Bauschinger Effect
Natural Elastic Limit
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Goodman

Mechanics Applied to Engineering
John Goodman, 1890

“.. whether the assumptions of the 
theory are justifiable or not  ….  We 
adopt it simply because it is the 
easiest to use, and for all practical 
purposes, represents Wöhlers data.  
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1903 - Ewing and Humfrey

Cyclic deformation leads 
to the development of slip 
bands and fatigue cracks

N = 1,000 N = 2,000

N = 10,000 N = 40,000 Nf = 170,000
Ewing and Humfrey (1903) The Fracture of Metals Under Repeated Alterations of Stress, 
Philosophical Transactions of the Royal Society, A, Vol 221, 241-253
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Their Description of Fatigue

The course of the breakdown was as follows: The first 
examination, made after a few reversals of the stress, 
showed slip lines on some of the crystals … after more 
reversals of stress additional slip lines appeared   ….  
After many reversals they changed into comparatively 
wide bands with rather hazily defined edges   … some 
parts of the crystals became almost covered with dark 
markings  ….  at this stage some of the crystals had 
cracked.

Once an incipient crack forms across a set of crystals, the 
effect of further reversals is mainly confined to the 
neighborhood of the crack tip.
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20th Century

1920 Griffith Fracture Mechanics
1945 Miner Cumulative Damage
1954 Coffin & Manson Plastic Strains
1961 Paris Crack Growth
1963 Peterson Strain-Life Method
1967 Endo Cycle Counting
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Circa 1910 Data Acquisition
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Early Strip Chart
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Griffith 1893-1963

Circa1920 studied scratches and 
the effect of surface finish on 
fatigue for the Royal Aircraft 
Establishment

E2a 

Griffith (1920) The Phenomena of Rupture and Flow in Solids, 
Philosophical Transactions of the Royal Society, A, 221, 163-198
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Miner

Miner (1945) Cumulative Damage in Fatigue, Journal of Applied Mechanics, Vol. 12, 1945, A159-A164

The phenomenon of 
cumulative damage under 
repeated loads was assumed 
to be related to the net work 
absorbed by a specimen

“proved” linear damage rule
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1954 - Coffin and Manson
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Manson (1953) Behavior of Materials Under 
Conditions of Thermal Stress, NACA Technical 
Note 2933
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Coffin (1954) A Study of the Effects of Cyclic Thermal 
Stress on a Ductile Metal, Transactions ASME, 
Vol. 76, 931-950
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1961 - Paris

Paris (1963) The Fracture Mechanics Approach to Fatigue, Proceedings of the Tenth Sagamore
Army Materials Conference, 107-132
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1963 Peterson

Peterson (1963) Fatigue of Metals: Part 3 Engineering and Design Aspects, 
Materials Research and Standards, 122-139
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Endo 1925 - 1989

What could be more basic than 
learning to count correctly?

Matsuishi and Endo (1968) Fatigue of Metals Subjected to Varying Stress – Fatigue Lives Under 
Random Loading, Proceedings of the Kyushu District Meeting, JSME, 37-40
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1980’s – Software Development
Development of 
the local strain 
approach.

Fatigue crack 
growth modeling 
established
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1990’s Finite Element
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2000’s

 Integrated Systems
Gigacycle Fatigue
Micro/nano Fatigue
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Integrated Systems

Component 
Loads

Component 
Stress State

Loading 
Locations and 
Orientations

FE

Fatigue

MBD
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Gigacycle Fatigue

surface
microcracks

microcrack 
arrest

internal
nucleation

Murakami, Nomoto, and Ueda, “Fracture Mechanisms and Fracture Mechanics at Ultrasonic Frequencies”
Fatigue and Fracture of Engineering Materials and Structures, Vol. 22, No. 7, 1999, 581-590
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Micro/ Nano Fatigue

Takashima and Higo, “Fatigue and Fracture of a Ni-P Amorphous Alloy Thin Film on the Micrometer Scale”,
Fatigue and Fracture of Engineering Materials and Structures, Vol. 28, No. 8, 2005, 703-710
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Things Worth Remembering

 The physics of fatigue has been well known 
for over 100 years

 Application of this knowledge still poses 
challenges



Fatigue Seminar



Fatigue Made Easy

Physics of Fatigue Damage

Professor Darrell F. Socie
Mechanical Science and Engineering

University of Illinois

© 2002-2011 Darrell Socie, All Rights Reserved



Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 1 of 33

Seminar Outline

1. Historical background
2. Physics of fatigue
3. Characterization of materials
4. Similitude (why fatigue modeling works)
5. Variability
6. Mean stress 
7. Stress concentrations
8. Surface effects
9. Variable amplitude loading 
10. Welded structures 
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10-10 10-8 10-6 10-4 10-2 100 102

Specimens StructuresAtoms Dislocations Crystals

Size Scale for Studying Fatigue

Understand the physics on this scale

Model the physics on this scale

Use the models on this scale
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The Fatigue Process

 Crack nucleation
 Small crack growth in an elastic-plastic 

stress field
Macroscopic crack growth in a nominally 

elastic stress field
 Final fracture
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1903 - Ewing and Humfrey

Cyclic deformation leads 
to the development of slip 
bands and fatigue cracks

N = 1,000 N = 2,000

N = 10,000 N = 40,000 Nf = 170,000
Ewing, J.A. and Humfrey, J.C. “The fracture of metals under repeated alterations of stress”, 
Philosophical Transactions of the Royal Society, Vol. A200, 1903, 241-250
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Crack Nucleation
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Slip Band in Copper

Polak, J. Cyclic Plasticity and Low Cycle Fatigue Life of Metals, Elsevier, 1991
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Slip Band Formation

Loading Unloading

Extrusion

Undeformed
material

Intrusion
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Slip Bands

Ma, B-T and Laird C. “Overview of fatigue behavior in copper sinle crystals –II Population, size, distribution and growth
Kinetics of stage I cracks for tests at constant strain amplitude”, Acta Metallurgica, Vol 37, 1989, 337-348
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Crack Initiation at Inclusions

Langford and Kusenberger, “Initiation of Fatigue Cracks in 4340 Steel”, Metallurgical Transactions, Vol 4, 1977, 553-559
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Subsurface Crack Initiation

Y. Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, 2002
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Fatigue Limit and Strength Correlation
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From Forrest, Fatigue of Metals, Pergamon Press, London, 1962
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Crack Nucleation Summary

 Highly localized plastic deformation
 Surface phenomena
 Stochastic process
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100 µm

bulksurface

10 µm

surface

20-25 austenitic steel in symmetrical push-pull fatigue 
(20°C, p /2= 0.4%) : short cracks on the surface and in the bulk

Surface Damage

From Jacques Stolarz, Ecole Nationale Superieure des Mines
Presented at LCF 5 in Berlin, 2003 
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Stage I Stage II

loading direction

free
surface

Stage I and Stage II
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Stage I Crack Growth

Single primary slip system

individual grain

near - tip plastic zone

S

S
Stage I crack is strongly affected by slip 
characteristics, microstructure 
dimensions, stress level, extent of near 
tip plasticity
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Small Cracks at Notches

D a
crack tip plastic zone

notch plastic zone

notch stress field

Crack growth controlled by the notch plastic strains
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Small Crack Growth

1.0 mm

N = 900

Inconel 718


 
= 0.02

Nf = 936
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Crack - Microstructure Interactions

Akiniwa, Y., Tanaka, K., and Matsui, E.,”Statistical Characteristics of Propagation of Small Fatigue Cracks in Smooth 
Specimens of Aluminum Alloy 2024-T3, Materials Science and Engineering, Vol. A104, 1988, 105-115
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Strain-Life Data
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Most of the life is spent in microcrack growth in the 
plastic strain dominated region
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Stage II Crack Growth

Locally, the crack grows in shear 
Macroscopically it grows in tension
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Long Crack Growth

Plastic zone size is much larger than the material 
microstructure so that the microstructure does not 
play such an important role.



Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 23 of 33

Material strength does not play a major role in fatigue crack growth

Crack Growth Rates of Metals
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Maximum Load

monotonic plastic zone



Stresses Around a Crack




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Stresses Around a Crack (continued)

Minimum Load 



cyclic plastic zone


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Crack Closure

S = 250

b

S = 175

c

S = 0

a
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Crack Opening Load
Damaging portion of loading history

Nondamaging portion of loading history

Opening load
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Mode I
opening

Mode II
in-plane shear

Mode III
out-of-plane shear

Mode I, Mode II, and Mode III
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Mode I Growth
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crack growth direction

10 m

slip bandsshear stress

Mode II Growth
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1045 Steel - Tension
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Fatigue Life, 2Nf
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Things Worth Remembering

 Fatigue is a localized process involving the 
nucleation and growth of cracks to failure.

 Fatigue is caused by localized plastic 
deformation.

Most of the fatigue life is consumed growing 
microcracks in the finite life region

 Crack nucleation is dominate at long lives.
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3. Characterization of materials
4. Similitude (why fatigue modeling works) 
5. Variability
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7. Stress concentrations
8. Surface effects
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Characterization

 Stress Life Curve
 Fatigue Limit

 Strain Life Curve
Cyclic Stress Strain Curve

 Crack Growth Curve
 Threshold Stress Intensity



Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 3 of 31 

Bending Fatigue
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SN Curve
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SN Curve
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The fatigue limit is usually only found in steel laboratory specimens
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Fatigue Damage
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Fatigue Limit Strength Correlation
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From Forrest, Fatigue of Metals, Pergamon Press, London, 1962
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Fatigue Limit Strength Correlation
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SN Materials Data
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Strain Controlled Testing
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Cyclic Hardening / Softening
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Stable Hysteresis Loop





ep

Hysteresis loop
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Strain-Life Data   
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Cyclic Stress Strain Curve
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Strain-Life Data    
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Elastic and Plastic Strain-Life Data
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Strain-Life Curve
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Transition Fatigue Life

From Dowling, Mechanical Behavior of Materials, 1999
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N Materials Data

Fatigue Life, Reversals
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Crack Growth Testing
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Stress Concentration of a Crack

2 a






a21KT

a ~ 10-3

for a crack


 

~ 10-9

KT ~ 2000

appliedlocal 2000

Traditional material properties like tensile strength 
are not very useful for cracked structures
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Stress Intensity Factor





2a

aK 

K characterizes the magnitude of the 
stresses, strains, and displacements in the 
neighborhood of a crack tip

Two cracks with the same K will have 
the same behavior
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Crack Growth Measurements
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Crack Growth Data
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Threshold Region

threshold stress intensity
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Threshold Stress Intensity

From Dowling, Mechanical Behavior of Materials, 1999
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Non-propagating Crack Sizes

a212.1KTH 




Small cracks are frequently semielliptical surface cracks
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Non-propagating Crack Sizes

Ultimate Strength, MPa
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Stable Crack Growth
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Crack Growth Data

  0.312 mMPaK109.6
dN
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Ferritic-Pearlitic Steel:

Martensitic Steel:

Austenitic Stainless Steel:

Barsom, “Fatigue Crack Propagation in Steels of Various Yield Strengths”
Journal of Engineering for Industry, Trans. ASME, Series B, Vol. 93, No. 4, 1971, 1190-1196 
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Things Worth Remembering

Method
Stress-Life
Strain-Life

Crack Growth

Physics
Crack Nucleation

Microcrack Growth
Macrocrack Growth

Size
0.01 mm

0.1 - 1 mm
> 1mm



Fatigue Seminar



Fatigue Made Easy

Similitude

Professor Darrell F. Socie
Mechanical Science and Engineering

University of Illinois

© 2002-2011 Darrell Socie, All Rights Reserved



Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 1 of 33

Seminar Outline

1. Historical background
2. Physics of fatigue
3. Characterization of materials
4. Similitude ( why fatigue modeling works )
5. Variability
6. Mean stress 
7. Stress concentrations
8. Surface effects
9. Variable amplitude loading 
10. Welded structures 
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Fatigue Analysis

Material
Data

Component
Geometry

Service
Loading

Analysis Fatigue
Life Estimate

?
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The Similitude Concept

Why Fatigue Modeling Works !
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What is the Similitude Concept

The “Similitude Concept” allows engineers to 
relate the behavior of small-scale cyclic 
material test specimens, defined under 
carefully controlled conditions, to the likely 
performance of real structures subjected to 
variable amplitude fatigue loads under either 
simulated or actual service conditions.
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Fatigue Analysis Techniques

Stress - Life
BS 7608, Eurocode 3 
Strain - Life
Crack Growth
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Life Estimation

Method
Stress-Life
BS 7608

Strain-Life
Crack Growth

Physics
Crack Nucleation

Crack Growth
Microcrack Growth
Macrocrack Growth

Size
0.01 mm

1 - 10 mm
0.1 - 1 mm

> 1mm
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Stress-Life Fatigue Modeling

P

Fixed
End

The Similitude Concept states that if the 
instantaneous loads applied to the ‘test’ 
structure (wing spar, say) and the test 
specimen are the same, then the response 
in each case will also be the same and can 
be described by the material’s S-N curve. 
Due account can also be made for stress 
concentrations, variable amplitude loading 
etc.
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Fatigue Analysis: Stress-Life

Material
Data

Component
Geometry

Service
Loading

Analysis Fatigue
Life Estimate

SN curve
Ka, Ks, …

Kf 

S , Sm
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Stress-Life

Major Assumptions:
Most of the life is consumed nucleating cracks
Elastic deformation
Nominal stresses and material strength control 

fatigue life
Accurate determination of Kf for each geometry 

and material
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Stress-Life

 Advantages:
Changes in material and geometry can easily be 

evaluated
 Large empirical database for steel with standard 

notch shapes
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Stress-Life

 Limitations:
Does not account for notch root plasticity
Mean stress effects are often in error
Requires empirical Kf for good results
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BS 7608 Fatigue Modeling

The Similitude Concept states that if the 
instantaneous loads applied to the ‘test’ 
structure (welded beam on a bulldozer, say) 
and the test specimen (standard fillet weld) 
are the same, then the response in each 
case will also be the same and can be 
described by one of the standard BS 7608 
Weld Classification S-N curves.
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Weld Classifications

D E

F2 G
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Fatigue Analysis: BS 7608

Material
Data

Component
Geometry

Service
Loading

Analysis Fatigue
Life Estimate

Weld SN curve

Class

S
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BS 7608

Major Assumptions:
Crack growth dominates fatigue life
Complex weld geometries can be described by a 

standard classification
Results independent of material and mean stress 

for structural steels
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BS 7608

 Advantages:
Manufacturing effects are directly included
 Large empirical database exists
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BS 7608

 Limitations:
Difficult to determine nominal stress and weld 

class for complex shapes
No benefit for improving manufacturing process
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Strain-Life Fatigue Modeling

The Similitude Concept states that if the 
instantaneous strains applied to the ‘test’ 
structure (vehicle suspension, say) and the 
test specimen are the same, then the 
response in each case will also be the same 
and can be described by the material’s e-N 
curve. Due account can also be made for 
stress concentrations, variable amplitude 
loading etc.
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Fatigue Analysis: Strain-Life

Material
Data

Component
Geometry

Service
Loading

Analysis Fatigue
Life Estimate

N curve


 
curve

Kf 

S , Sm
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Strain-Life

Major Assumptions:
 Local stresses and strains control fatigue 

behavior
Plasticity around stress concentrations
Accurate determination of Kf
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Strain-Life

 Advantages:
Plasticity effects
Mean stress effects
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Strain-Life

 Limitations:
Requires empirical Kf

 Long life situations where surface finish and 
processing variables are important
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Crack Growth Fatigue Modeling

The Similitude Concept  
states that if the stress 
intensity (K) at the tip of a 
crack in the ‘test’ structure 
(welded connection on an oil 
platform leg, say) and the 
test specimen are the same, 
then the crack growth 
response in each case will 
also be the same and can be 
described by the Paris 
relationship. Account can 
also be made for local 
chemical environment, if 
necessary. 
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Fatigue Analysis: Crack Growth

Material
Data

Component
Geometry

Service
Loading

Analysis Fatigue
Life Estimate

da/dN curve

K

S , Sm
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Crack Growth

Major Assumptions:
Nominal stress and crack size control fatigue life
Accurate determination of initial crack size



Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 26 of 33

Crack Growth

 Advantage:
Only method to directly deal with cracks
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Crack Growth

 Limitations:
Complex sequence effects
Accurate determination of initial crack size
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Choose the Right Model

 Similitude
 Failure mechanism
Size scale
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Design Philosophy

 Safe Life
 Damage Tolerant



Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 30 of 33

Safe Life
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Choose an appropriate risk and replace critical parts
after some specified interval 
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Damage Tolerant

Inspect for cracks larger than a1 and repair
Cycles

C
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a1

a2

Safe Operating Life

Inspection
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Inspection

A Boeing 777 costs $250,000,000

A new car costs $25,000

For every $1 spent inspecting and maintaining a 
B 777 you can spend only 0.01¢ on a car
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Things Worth Remembering

Questions to ask
Will a crack nucleate ?
Will a crack grow ?
How fast will it grow ?

 Similitude
 Failure mechanism
Size Scale
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Seminar Outline

1. Historical background
2. Physics of fatigue
3. Characterization of materials
4. Similitude
5. Variability
6. Mean stress 
7. Stress concentrations
8. Surface effects
9. Variable amplitude loading 
10. Welded structures 
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Sources of Variability
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materials manufacturing

usage

107

Fatigue Life, 2Nf

1

10 102 103 104 105 106

0.1

10-2

1

10-3

10-4

S
tra

in
 A

m
pl

itu
de

time

50%

100 %
Fa

ilu
re

s

Strength

Stress



Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 3 of 22

“Average” Load History

Take a loading history that produces “average” fatigue 
damage and multiply it by a scale factor to obtain the 
distribution of loads.
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Gumble Probability Plot 
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Maximum Load Correlation
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Variability in Fatigue Lives
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Variability in Loading
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LogNormal Distribution
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Statistical Variability of Fatigue Life
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Sinclair and Dolan, “Effect of Stress Amplitude on the Variability in Fatigue Life of 7075T6 Aluminum Alloy”
Transactions ASME, 1953
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P-S-N Curve
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10/1b)N(S
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Suppose      has a COV = 0.1'
fS

The variability in Nf will be: 

    3.11)1.0(11COV1COV
22

'
ff

102b2
SN 

Variability in Strength and Life

A 10% variation in strength results in a factor of 20 in fatigue life
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Strain Life Data for 980X Steel
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Curve Fitting
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Distribution

LogNormal Distribution
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Material Property Simulation
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Typical Variability

 Pit Size
 Bolt Preload Force
 Surface Roughness
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Pits That Initiated Cracks

7010-T7651

Pre-corroded specimens

300 specimens

246 failed from pits

Crawford et.al.”The EIFS Distribution for Anodized and Pre-corroded 7010-T7651 under Constant Amplitude Loading”
Fatigue and Fracture of Engineering Materials and Structures, Vol. 28, No. 9 2005, 795-808 
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Pit Size Distribution
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Variability in Bolt Force
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Surface Roughness Variability
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Variability Summary

Source COV
Service Loading 0.47

Materials 0.12
Manufacturing 0.14
Surface Finish 0.10

Environment 0.33

Strength

Stress

 
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n

1i

a2
X 1C1CCOV

2
i

i

Largest variability dominates
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Stress - Strength

initial cost

warranty cost
reputation cost

customer 
usage

strength

design and 
test loads
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Things Worth Remembering

 Fatigue data inherently contains a lot of 
variability

 The variability is predictable and quantifiable
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Seminar Outline

1. Historical background
2. Physics of fatigue
3. Characterization of materials
4. Similitude (why fatigue modeling works)
5. Variability
6. Mean stress 
7. Stress concentrations
8. Surface effects
9. Variable amplitude loading 
10. Welded structures 
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Mean Stresses
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General Observations

 Tensile mean stresses reduce the fatigue life 
or decrease the allowable stress range

 Compressive mean stresses increase the 
fatigue life or increase the allowable stress 
range
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Mechanism

Fatigue damage is a shear process

S

Tensile mean stresses open 
microcracks and make sliding easier

2
Smean
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Goodman 1890

Mechanics Applied to Engineering
John Goodman, 1890

“.. whether the assumptions of the 
theory are justifiable or not  ….  We 
adopt it simply because it is the 
easiest to use, and for all practical 
purposes, represents Wöhlers data.  

Sultimate = Smin + 2 S
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Goodman Diagram
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Test Data ( 1941 )
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J.O. Smith, The Effect of Range of Stress on the Fatigue Strength of Metals,
Engineering Experiment Station Bulletin 334, University of Illinois, 1941
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Compression
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Modified Goodman ( no yielding )
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Mean Stress Influence on Life
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Stress Concentrations

Plastic
Zone



 The elastic material surrounding
the plastic zone around a stress
concentration forces the material 
to deform in strain control
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Mean Stresses at Notches
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
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elastic plastic

Nominal
Notch

NotchNominal

Nominal mean stress is less 
than notch mean stress

Nominal mean stress is greater 
than notch mean stress

Nominal Notch
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Morrow Mean Stress Correction
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Mean Stress Relaxation

Stadnick and Morrow, “Techniques for Smooth Specimen Simulation of Fatigue Behavior of Notched Members”
ASTM STP 515, 1972, 229-252
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Loading Histories
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Test Results
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Crack Growth Physics



Maximum load

Minimum load





Mean stresses in plastic 
zone are small



Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 19 of 31

Mean Stress Effects

From: Dowling and Thangjitham, An Overview and Discussion of Basic Methodology for Fatigue,
ASTM STP 1389,2000, 3-38
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Compression

Crack open

Crack closed
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Compressive Stresses

Compressive stresses are not very damaging in crack growth

S
tre

ss

Crack opening level
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Sources of Mean/Residual Stress

 Loading History
 Fabrication
 Shot Peening
 Heat Treating
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Loading History

Tension overloads produce favorable 
compressive residual stress

Compressive overloads produce 
unfavorable tensile residual stress








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Fabrication
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Cold Expansion

1965 Basic Cx process conceptualized (Boeing)
The split sleeve is 
slipped onto the 
mandrel, which is 
attached to the 
hydraulic puller unit.

The mandrel and sleeve are 
inserted into the hole with the 
nosecap held firmly against the 
workpiece.

When the puller is activated, 
the mandrel is drawn 
through the sleeve radially 
expanding the hole.

Courtesy of Fatigue Technology Inc.
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Theory of Cold Expansion

Courtesy of Fatigue Technology Inc.
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Fatigue Life Improvement

Courtesy of Fatigue Technology Inc.
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Shot Peening
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Shot Peening Results

www.metalimprovement.com
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Heat Treating

200

600

400

0
0 5 10 15

B
rin

el
lH

ar
dn

es
s

Depth, mm
0 5 10 15

-1500

-1000

-500

0

500

1000

Depth, mm
R

es
id

ua
l S

tre
ss

, M
P

a

Radial

Circumferential

Axial

50 mm diameter induction hardened 1045 steel shaft



Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 31 of 31

Things Worth Remembering

 Local mean stress rather than the nominal 
mean stress governs the fatigue life

Mean stress has the greatest effect on crack 
nucleation
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Seminar Outline

1. Historical background
2. Physics of fatigue
3. Characterization of materials
4. Similitude
5. Variability
6. Mean stress 
7. Stress concentrations
8. Surface effects
9. Variable amplitude loading 
10. Welded structures 
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Stress Concentration Factor

Applied stress
Local stress


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
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a21appliedlocal
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Define K
 

and K
 

after Yielding

S , e


 

, 

Define: nominal stress, S
nominal strain, e

notch stress, 
notch strain, 

Stress concentration

Strain concentration
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K 


e
K 
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Stress and Strain Concentration

Kt

Nominal Stress
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K
 

and K
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Neuber’s Rule
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Neuber’s Rule for Fatigue
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The product of stress times strain controls fatigue life
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SN Materials Data
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N Materials Data
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A Dilemma

Stress analysis and stress concentration factors are 
independent of size and are related only to the ratio 
of the geometric dimensions to the loads

Fatigue is a size dependent phenomenon

How do you put the two together ?
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Similitude
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Fatigue of Notches

From Dowling, Mechanical Behavior of Materials, 1999
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Notch Size

Kt Kf
Kt

Kf

Large Notch Small Notch
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Microstructure Size

Kt Kf

Kt Kf

Low Strength High Strength
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Stress Gradient

Kt Kf

Kt

Kf

Low Kt High Kt
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Kt vs Kf
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Peterson’s Equation
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Peterson’s Constant
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Static Strength

hole
Kt = 2.5

slot
Kt = 5

diamond
Kt = 20

edge
Kt = 20
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1018 Steel Test Data
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Notched SN Curve
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Stress concentrations are not very important at short lives
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Crack Growth Data
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Frost Data
nucleation fracture

Rotating bending
Notched bar

Notched plate
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Frost, “A Relation Between the Critical Alternating Propagation Stress and Crack Length for Mild Steel”
Proceedings of the Institute for Mechanical Engineers, Vol. 173, No. 35, 1959, 811-836
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Significance

D
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For Kt > 4, the notch acts like a crack with a depth D

Kt does not play a role for sharp notches !

A stress concentration behaves like a crack
once a stress concentration becomes large (Kt > 4)
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Cracks at Notches

D
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Kt S SS

a << D a >> D
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Stress Intensity Factors
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Cracks at Holes

201 1 22

Once a crack reaches 10% of the hole radius, 
it behaves as if the hole was part of the crack
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Specimens with Similar Geometry

Kt = 2.4Kt = 10.7

Ultimate Strength 780 MPa
Yield Strength 660 MPa

25 25
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Test Results
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Things Worth Remembering

 Fatigue may be thought of as a failure of the 
average stress concept, consequently, 
fatigue usually begins at stress concentrators 
which are most frequently located on the 
surface

 The severity of a stress concentrator in 
fatigue is size dependent

 Small stress concentrators are more 
effective in high strength materials
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Seminar Outline

1. Historical background
2. Physics of fatigue
3. Characterization of materials
4. Similitude (why fatigue modeling works)
5. Variability
6. Mean stress 
7. Stress concentrations
8. Surface effects
9. Variable amplitude loading 
10. Welded structures 
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Modern View of the Fatigue Limit
The fatigue limit is the stress where a crack may 
nucleate but will not grow through the first 
microstructural barrier such as the grain size, 
pearlite colony size, prior austenite grain size, 
eutectic cell size or precipitate spacing.

Slip Bands Crack
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Intrinsic Flaws

Little effect of surface pit because 
it is smaller than the grain size

Large effect of defect because 
it is larger than the grain size
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Surface Finish Influence

Method
Stress-Life
Strain-Life

Crack Growth

Physics
Crack Nucleation

Microcrack Growth
Macrocrack Growth

Size
0.01 mm

0.1 - 1 mm
> 1mm

Influence of
Surface Finish

Strong
Moderate

None
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Sources of Surface Effects


 
Machining 


 

Cutting


 

Grinding


 
Corrosion


 

General


 

Pitting


 
Processing


 

Cutting/Shearing


 

Casting


 

Forging


 

Plating


 
Foreign Object Damage


 

Nicks


 

Scratches
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Machining

1

Cracks start in machining marks not in the direction of the 
maximum principal stress

100 m
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Casting

100 m

Surface flaw in gray cast iron
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Nodular Iron Surface

Flake graphite formed on the surface of a nodular iron casting

Starkey and Irving, “A Comparison of the Fatigue Strength of Machined and As-cast Surfaces of SG Iron”
International Journal of Fatigue, July, 1982, 129-136
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Surface Reduction Factors
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Noll and Lipson 1945
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Hiam and Pietrowski 1978

Driven for 1 or 2 years 
in Southern Ontario
before making specimens
to evaluate corrosion effects

Hiam and Pietrowski, “The Influence of Forming and Corrosion on the Fatigue 
Behavior of Automotive Steels”, SAE Paper 780040, 1978

Strain controlled fatigue testing
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Kf for pitting

Hot Rolled
Surface

Corroded
Surface

950X 1.12 1.49

0.06% C HSLA 1.18 1.65

0.18% C HSLA 1.90

Surface finish factor predicts Kf = 1.6 for a Hot Rolled Surface

from Hiam and Pietrowski
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Pit Depth Effects on Life
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Fatigue Notch Factor for Pits
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Suspension
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Spring Failures
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Microscopic Examination

Corrosion Pits

Corrosion Pits
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Chrome Plating
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Almen, “Fatigue Loss and Gain by Electroplating” , Product Engineering, Vol. 22, No. 5, 1951, 109-116

Chrome plated

Shot peened and
chrome plated

Base steel
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Hard Chrome Plating

coating

Metals Handbook, Volume 9, Fractography and Atlas of Fractographs

In addition to cracks, coatings frequently have high tensile residual stresses



Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 21 of 27

Galvanized Steel
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Vogt, Boussac, Foct, “Prediction of Fatigue Resistance of a Hot-dip Galvanized Steel”
Fatigue and Fracture of Engineering Materials and Structures, Vol. 23, No. 1, 2001,33-40
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Fatigue Limit for Galvanized Steel

100
10 100 1000

200

300

400

Fa
tig

ue
 L

im
it

Coating Thickness, t m

Uncoated Fatigue Limit

t
KS TH

FL





Coatings can be modeled with a crack equal to the coating thickness
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Foreign Object Damage

http://www.eng.ox.ac.uk/~ftgwww/frontpage/fod2.html
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Foreign Object Damage

http://www.eng.ox.ac.uk/~ftgwww/frontpage/fod2.html
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Upper Control Arm
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Serial Number



Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 27 of 27

Things Worth Remembering



 
Fatigue crack nucleation is a surface phenomena 
and everything about the surface affects the fatigue 
life



 
Most of the design rules are conservative having 
been developed for materials of the 1950’s
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4. Similitude (why fatigue modeling works) 
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6. Mean stress  
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8. Surface effects 
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Variable Amplitude Loading 

How to you identify cycles ? 

How do you assess fatigue damage for a cycle ? 



Fatigue Seminar  © 2002-2011 Darrell Socie, All Rights Reserved   3 of 25 

Rainflow Cycle Counting 

What could be more basic than  
learning to count correctly? 

Matsuishi and Endo (1968) Fatigue of Metals Subjected to Varying Stress – Fatigue Lives Under  
Random Loading, Proceedings of the Kyushu District Meeting, JSME, 37-40 
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Rainflow 
strain 
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Counts 1/2 cycles 
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Rainflow and Hysteresis 
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Cumulative Damage 
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Linear Damage 
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Nonlinear Damage 

0.2 0.4 0.6 0.8 1.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 
0 

Cycle ratio,  

D
am

ag
e 

fra
ct

io
n 

n 
Nf 

0040.=ε∆

0200.=ε∆

ΣD = 0.7 

ΣD = 1.3 

ΣD ~ 1 



Fatigue Seminar  © 2002-2011 Darrell Socie, All Rights Reserved   9 of 25 

Periodic Overload Results 
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The fatigue limit is reduced by a factor of 3  
when a few large cycles are applied 

Bonnen and Topper, “The Effects of Periodic Overloads on Biaxial Fatigue of Normalized SAE 1045 Steel” 
ASTM STP 1387, 2000, 213-231 
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Fatigue Damage Calculations 
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Crack Growth Data 
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Crack Growth Data 
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Multiple Choice 

Which cycles do the most fatigue damage ? 
 
 (a) a few large cycles 
 
 (b) a moderate number of intermediate cycles 
 
 (c) a large number of small cycles 
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Fatigue Data 
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Loading History 
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Slope = 3 
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Slope = 5 
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Slope = 10 
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Mechanisms and Slopes 
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A combination of nucleation and growth 
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Equivalent Load 
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SAE Keyhole Specimen 

Suspension 

Transmission 

Bracket 
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SAE Keyhole Test Data 
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How Many Cycles ? 

Engine: 
2 starts/day for 10 years  =  7000 cycles 
3000 rpm for 100,000 miles (2000 hrs) = 3.6 x 108 cycles 
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How Many Cycles ? (continued) 
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Bracket Vibration: 

0.5 per minute for 100,000 miles (2000 hrs) = 60,000 cycles 
12 hz continuous vibration for 2000 hrs = 8.6 x 107 cycles 
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Things Worth Remembering 

 Rainflow counting is employed to identify 
cycles 

 The slope of the fatigue curve ( damage 
mechanism) has a large influence on how 
much damage is caused by smaller cycles 
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Seminar Outline 

1. Historical background 
2. Physics of fatigue 
3. Characterization of materials 
4. Similitude (why fatigue modeling works) 
5. Variability 
6. Mean stress  
7. Stress concentrations 
8. Surface effects 
9. Variable amplitude loading  
10. Welded structures  
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Analyzing Welds 

 Nominal Stress 
 Structural or Hot Spot Stress 
 Local Stress Strain 
 Crack Growth 
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Nominal Stress 

    Nominal stress approaches are based on 
   extensive tests of welded joints and  
   connections. Weld joints are classified by 
   type , loading and shape. For example, a 
   transversely loaded butt weld. It is 
assumed and confirmed by experiments that welds of a 
similar shape have the same general fatigue behavior so 
that a single design SN curve can be employed for any 
weld class. The designer need only determine the nominal 
stress and select a weld class. There is no need to directly 
consider the stress concentration effects of the weld.  
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Structural Stress 

    Structural stress approaches are often 
   referred to as "hot-spot methods". The 
   structural stress includes the  
   macroscopic stress concentrating 
   effects of the weld detail but not the 
   local peak stress caused by the notch 
at the weld toe. There are various methods used to 
determine the structural stress. They involve 
extrapolating the computed or measured stresses from 
two points near the weld to a structural stress at the weld 
toe. This method works in situations where there is no 
clear definition of the nominal stress.  
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Local Stress Strain 

    Local stress or strain approaches 
   include both the macroscopic  
   stress concentration due to the  
   weld shape and the local stress  
   concentration at the weld toe. To 
apply traditional methods of fatigue analysis to 
welds, an appropriate value of the stress 
concentration factor and residual stress must be 
selected. Although the smallest radius produces the 
largest stress concentration factor, its effect in 
fatigue is smaller because of the gradient effect. As 
a result there is a critical radius for fatigue that can 
be used to compute the fatigue notch factor.  
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Crack Growth 

    Many weld details have planar  
   lack of fusion defects. This is  
   particularly true of fillet welds. In  
   this case fracture mechanics 
models for crack growth are the most appropriate 
fatigue technology.  
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Nominal Stress Weld Classifications 

  

D E 

F2 G 
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Crack Growth Data 
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Ferritic-Pearlitic Steel: 

Martensitic Steel: 

Austenitic Stainless Steel: 

Barsom, “Fatigue Crack Propagation in Steels of Various Yield Strengths” 
Journal of Engineering for Industry, Trans. ASME, Series B, Vol. 93, No. 4, 1971, 1190-1196  
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Sharp, “Behavior and Design of Aluminum Structures”,McGraw-Hill, 1992 
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Crack Growth Data 
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Residual Stress from Welding 
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Weld Distortion 



Fatigue Seminar © 2002-2010 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved  14 of 34  

Weld Toe Residual Stress 

Yield 
stress 

Maximum stress at the weld toe  
is nearly the same for any cycle 

∆ε 
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Mean Stress Effects 

 As welded structures usually have the 
maximum possible mean stress 

 Stress relief, peening, etc. will have a 
substantial effect on the fatigue life 
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Butt and Fillet Weld Test Data 

99% survival with 95% confidence 
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Weld Terminations 
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Sources of Inherent Scatter 

 Weld quality 
 Mean, fabrication and residual stresses 
 Stress concentrations (geometry) 
 Weldment size 
 Material properties 
 

Opportunities for Improvement ! 
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The Good and Bad 

Good weld design 

Bad weld design 
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Nominal Stress ? 



Fatigue Seminar © 2002-2010 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved  21 of 34  

 Various stress distributions in a T-butt weldment with transverse fillet welds;  
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• Normal stress distribution in the weld throat plane (A),  
• Through the thickness normal stress distribution in the weld toe plane (B),  
• Through the thickness normal stress distribution away from the weld (C), 
• Normal stress distribution along the surface of the plate (D), 
• Normal stress distribution along the surface of the weld (E),  
• Linearized normal stress distribution in the weld toe plane (F). 

Stress Distributions in Weldments 
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Experimental Shell  
elements 

Fine 3-D FE 
mesh 

Coarse 3-D FE 
mesh 

Stress  magnitudes and distributions obtained from various FE 
models 

Finite Element Models 
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σpeak 

σn 
σhs 

Peak and Hot Spot Stress 
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Hot Spot SN Curves 
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Typical Butt Weld 
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Weld Toe 



Fatigue Seminar © 2002-2010 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved  28 of 34  

Macroscopic LOF 

3 mm 
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Weld Flaws 

Even good welds contain initial crack like flaws  
0.1 to 1 mm long.  Reducing the size or eliminating  
these flaws will substantially improve fatigue lives. 
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Weld Improvement 

 Reduce weld toe stresses 
 Stress relieve 
 Improve local geometry 
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Macroscopic Shape 
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Things Worth Remembering 

 Local weld toe stresses, geometry and flaws 
control the life of weldments 
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