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... Made Easy
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Shakespheare Made Easy

Original

Nurse Now God in heaven bless thee! Hark you sir.

Romeo What say’st thou, my dear nurse?

Nurse Is your man secret? Did you ne’er hear say
Two may keep counsel, putting one away?

Omeo Romeo [ warrant thee my man’s as true as steel.
» Translation
and Juliet

Nurse May God in heaven bless you! But listen, sir— [She
beckons him to come nearer]

Romeo Yes, dear Nurse?

Nurse Is your man trustworthy? Did you never hear it said,
“Two can keep a secret if one doesn’t know it"'?

. Romeo |guarantee my man’s as true as steel.
MODERN ENGLISH VERSION
SIDE-BY-SIDE WITH FULL ORIGINAL TEXT

Shakespheare Made Easy, Alan Durband, Hutchinson & Co Ltd, London, 1985
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i Seminar Qutline

Historical background

Physics of fatigue

Characterization of materials

Similitude ( why fatigue modeling works )
Variability

Mean stress

Stress concentrations

Surface effects

Variable amplitude loading

10 Welded structures

©ONOOAWDNE

Fatigue Seminar © 2002-2011 Darrell Socie,, All Rights Reserved 6 of 39



i 19th Century

1829 | Albert Repeated Loads

1839 | Poncelet “fatigue”

1843 Rankine Stress Concentrations
1860 |Wohler Systematic Investigations
1886 | Baushinger Cyclic Deformation

1890 Goodman Mean Stresses

1903 Ewing & Humfrey | Fatigue Mechanisms

Fatigue Seminar
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i At the dawn of the industrial revolution

The first major transportation
disaster-Versailles accident of

May 11, 1842
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i ‘The Times’, May 11, 1842

“| have this day to announce to you one of the most
frightful events that has occurred in modern times. ...
The train of the left bank was unusually long; ... from
1500 to 1800 passengers. On arriving between
Meudon and Bellevue the axle tree of the first engine
broke. ... The second engine ... passed over it, and
the boiler burst ... The carriages arrived of course,
and passed over the wreck, when six of them were
... Instantly ignited. Three were totally consumed, ...
without the possiblility of escape to the unhappy
Inmates, who were locked up ... The number of killed
IS variously estimated (between 40 and 80).”
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Early steam engine
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Typical broken axle of the 1840s
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Fig 1. Classic appearance of a fatigue cracked
railway axle from Glynn, 1844.
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Expert opinions of the time

B “| never met one which did not present a
crystallization fracture...”

B “the principal causes ... are percussion, heat and
magnetism”

B “the change ... may take place instantaneously”

B “steam can speedily cause iron to become
magnetic”
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i Rankine 1820 - 1872

Trained as a civil engineer
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William Rankine’s second paper

+

Fatigue Seminar

Stated that deterioration of axles is gradual

“the fractures appear to have commenced with a
smooth, regularly-formed, minute fissure, extending
all round the neck of the journal, and penetrating on
an average to a depth of half an inch. ... until the
thickness of sound iron in the center became
Insufficient to support the shocks to which it was
exposed.”

© 2002-2011 Darrell Socie,, All Rights Reserved
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Rankine ...

B “In all the specimens the iron remained fibrous;

proving that no material change had taken place in
the structure”

B He noted that fractures occurred at sharp corners

B He recommended that the journals be formed with a
large curve in the shoulder (which is exactly right!)
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Wohler 1819 - 1914

Prussian Railway Service

Work done before the development
of the metallurgical microscope

Critical value of stress below
which failure will not occur
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Wohler Tests
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Wohler circa 1850

Fatigue Dynamics circa 2000
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:L Wohler Observations

B Steel will rupture at stress less than the elastic limit if
the stress Is repeated a sufficient number of times

B Stress range rather than maximum stress
determines the number of cycles

B There appears to be a limiting stress range which
may be applied indefinitely without failure

B As the maximum stress increases, the limiting stress
range decreases

Fatigue Seminar © 2002-2011 Darrell Socie,, All Rights Reserved 19 of 39



Bauschinger 1834 - 1893

gl

Cyclic Behavior of Materials
Bauschinger Effect
Natural Elastic Limit
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Goodman

Mechanics Applied to Engineering - Jeatic breaking stress b
John Goodman, 1890
o8
3
“.. whether the assumptions of the » <
theory are justifiable or not .... We 7 ﬁvt"'y
adopt it simply because it is the g m,ﬂ"‘
easiest to use, and for all practical i)
purposes, represents Wohlers data. Tersion,
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1903 - Ewing and Humfrey

Cyclic deformation leads
to the development of slip
bands and fatigue cracks

N = 1 OOO N = 2,000

N = 10,000 N = 40,000 N; = 170,000

Ewing and Humfrey (1903) The Fracture of Metals Under Repeated Alterations of Stress,
Philosophical Transactions of the Royal Society, A, Vol 221, 241-253
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Their Description of Fatigue

The course of the breakdown was as follows: The first
examination, made after a few reversals of the stress,
showed slip lines on some of the crystals ... after more
reversals of stress additional slip lines appeared

After many reversals they changed into comparatively
wide bands with rather hazily defined edges ... some
parts of the crystals became almost covered with dark
markings .... atthis stage some of the crystals had
cracked.

Once an incipient crack forms across a set of crystals, the
effect of further reversals is mainly confined to the
neighborhood of the crack tip.
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i 20" Century

1920 | Griffith Fracture Mechanics
1945 | Miner Cumulative Damage
1954 | Coffin & Manson |Plastic Strains

1961 |Paris Crack Growth

1963 | Peterson Strain-Life Method
1967 |Endo Cycle Counting

Fatigue Seminar
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Circa 1910 Data Acquisition
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Early Strip Chart
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Griffith 1893-1963

Circal920 studied scratches and
the effect of surface finish on
fatigue for the Royal Aircraft
Establishment

cna = \2YE

Griffith (1920) The Phenomena of Rupture and Flow in Solids,
Philosophical Transactions of the Royal Society, A, 221, 163-198
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N The phenomenon of

wn e cumulative damage under

e \\ repeated loads was assumed
g \\ to be related to the net work
2 om0 ! absorbed by a specimen
\
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“proved” linear damage rule

43
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22,500

10 5 0 5 10 5
CYCLES TO FAILURE

Miner (1945) Cumulative Damage in Fatigue, Journal of Applied Mechanics, Vol. 12, 1945, A159-A164
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1954 - Coffin and Manson
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Cycles to failure

Coffin (1954) A Study of the Effects of Cyclic Thermal
Stress on a Ductile Metal, Transactions ASME,

Vol. 76, 931-950
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1961 - Paris

Paris (1963) The Fracture Mechanics Approach to Fatigue, Proceedings of the Tenth Sagamore
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Army Materials Conference, 107-132
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1963 Peterson
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Peterson (1963) Fatigue of Metals: Part 3 Engineering and Design Aspects,
Materials Research and Standards, 122-139
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Endo 1925 - 1989

e EIPote L RAE 0 FRAE
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What could be more basic than
learning to count correctly?

Matsuishi and Endo (1968) Fatigue of Metals Subjected to Varying Stress — Fatigue Lives Under
Random Loading, Proceedings of the Kyushu District Meeting, JSME, 37-40
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1980’s — Software Development

Simple Test Coupons Model
the Damage Process

[

2N
~ 1

Unnotched, Uncracked
Precracked Specimen S Specimen
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Compact Tension
Fatigue Crack Growth

Uniaxial
Fatigue Crack Initiation

!

Crack Planes

Critical
Locations

Attachment Hole

Channel or
Box Section

1\(

Development of
the local strain
approach.

Fatigue crack
growth modeling
established

Fatigue Seminar © 2002-2011 Darrell Socie,, All Rights Reserved

33 0f 39



{ 1990’s Finite Element
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2000’s

M Integrated Systems
B Gigacycle Fatigue
B Micro/nano Fatigue

Fatigue Seminar © 2002-2011 Darrell Socie,, All Rights Reserved 35 of 39



Integrated Systems

Component
Loads

Loading
Locations and

_ ! Component
Orientations

Stress State
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Gigacycle Fatigue

microcracks | arrest | nucleation
P 1Cr-Mo steel, Carburized }
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Fig. 2 A typical stepwise S—N curve for a carburized steel.’

Murakami, Nomoto, and Ueda, “Fracture Mechanisms and Fracture Mechanics at Ultrasonic Frequencies”

Fatigue and Fracture of Engineering Materials and Structures, Vol. 22, No. 7, 1999, 581-590
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Micro/ Nano Fatigue

Takashima and Higo, “Fatigue and Fracture of a Ni-P Amorphous Alloy Thin Film on the Micrometer Scale”,

Fatigue and Fracture of Engineering Materials and Structures, Vol. 28, No. 8, 2005, 703-710
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i Things Worth Remembering

B The physics of fatigue has been well known
for over 100 years

B Application of this knowledge still poses
challenges
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i Seminar Qutline

Historical background

Physics of fatigue

Characterization of materials

Similitude (why fatigue modeling works)
Variability

Mean stress

Stress concentrations

Surface effects

Variable amplitude loading

10 Welded structures
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Size Scale for Studying Fatigue

Atoms Dislocations Crystals Specimens Structures

10-10 108 106 104 10-2 100 102

- >

Understand the physics on this scale

- >

Model the physics on this scale

ﬁ

Use the models on this scale
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i The Fatigue Process

B Crack nucleation

B Small crack growth in an elastic-plastic
stress field

B Macroscopic crack growth in a nominally
elastic stress field

B Final fracture
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Ewmg and Humfrey

Cyclic deformation leads
to the development of slip
bands and fatigue cracks

N = 10,000 N = 40,000 N; = 170,000
Ewing, J.A. and Humfrey, J.C. “The fracture of metals under repeated alterations of stress”,
Philosophical Transactions of the Royal Society, Vol. A200, 1903, 241-250
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Crack Nucleation
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Slip Band in Copper

Polak, J. Cyclic Plasticity and Low Cycle Fatigue Life of Metals, Elsevier, 1991
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Fatigue Seminar

Loading

Slip Band Formation

Extrusion

Undeformed

material

Intrusion

Unloading
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Slip Bands

Sum
e tn o
Ma, B-T and Laird C. “Overview of fatigue behavior in copper sinle crystals —II Population, size, distribution and growth
Kinetics of stage | cracks for tests at constant strain amplitude”, Acta Metallurgica, Vol 37, 1989, 337-348

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 8 of 33



Crack Initiation at Inclusions

Langford and Kusenberger, “Initiation of Fatigue Cracks in 4340 Steel”, Metallurgical Transactions, Vol 4, 1977, 553-559
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Subsurface Crack Initiation

Y. Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, 2002
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Fatigue Limit and Strength Correlation
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From Forrest, Fatigue of Metals, Pergamon Press, London, 1962
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i Crack Nucleation Summary

B Highly localized plastic deformation
W Surface phenomena
M Stochastic process
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Surface Damage

v

| surface ESPEESES

20-25 austenitic steel in symmetrical push-pull fatigue
(20°C, Ag,/2=10.4%) : short cracks on the surface and in the bulk

From Jacques Stolarz, Ecole Nationale Superieure des Mines
Presented at LCF 5 in Berlin, 2003
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Stage | and Stage ||

loading direction

A

free /

surface

-/

< )i >

Stage | Stage I
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Stage | Crack Growth

Single primary slip system

l s

] individual grain

Stage | crack is strongly affected by slip

characteristics, microstructure

[] near - tip plastic zone dimensions, stress level, extent of near
tip plasticity
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Small Cracks at Notches

notch plastic zone

notch stress field

—

crack tip plastic zone

\

Crack growth controlled by the notch plastic strains
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Small Crack Growth
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Crack Length Observations
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Crack - Microstructure Interactions

o

o da/dN, mm/cycle F _,4\
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PN
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E| +107

D Al B
| | | | | | (L \c 1 1 | 1 |
0.03 0.025 0.02 0.015 0.01 0.005 0 0.005 0.01 0.015 0.02 0.025
Crack Length, mm
Akiniwa, Y., Tanaka, K., and Matsui, E.,"Statistical Characteristics of Propagation of Small Fatigue Cracks in Smooth
Specimens of Aluminum Alloy 2024-T3, Materials Science and Engineering, Vol. A104, 1988, 105-115
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Strain-Life Data

10um 1mm

1 g 100 um fracture Crack size
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Most of the life is spent in microcrack growth in the
plastic strain dominated region
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i Stage Il Crack Growth

|
7

| N\

Locally, the crack grows in shear
Macroscopically it grows in tension
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Long Crack Growth

Plastic zone size is much larger than the material
microstructure so that the microstructure does not
play such an important role.
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Crack Growth Rates of Metals
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Material strength does not play a major role in fatigue crack growth
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Stresses Around a Crack

Maximum Load G 4

—

v
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A

monotonic plastic zone
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Stresses Around a Crack (continued)

-
_/

Minimum Load

” cyclic plastic zone
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Crack Closure

S=0
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Crack Opening Load

Damaging portion of loading history
A

v
Nondamaging portion of loading history
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Mode |, Mode Il, and Mode IlI

Mode | Mode II Mode Il
opening in-plane shear out-of-plane shear
<
S— —
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| ~_
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Mode | Growth

crack growth directon ——»
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Mode Il Growth

<€«—— crack growth direction
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1045 Steel - Tension
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O 1 1 ] ] | ]
1 10 10° 10° 10* 10° 10° 10’

Fatigue Life, 2N;
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1045 Steel - Torsion
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i Things Worth Remembering

B Fatigue is a localized process involving the
nucleation and growth of cracks to failure.

M Fatigue Is caused by localized plastic
deformation.

B Most of the fatigue life is consumed growing
microcracks in the finite life region

B Crack nucleation is dominate at long lives.
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i Seminar Qutline

Historical background

Physics of fatigue

Characterization of materials

Similitude (why fatigue modeling works)
Variability

Mean stress

Stress concentrations

Surface effects

Variable amplitude loading

10 Welded structures
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i Characterization

W Stress Life Curve
M Fatigue Limit
M Strain Life Curve
M Cyclic Stress Strain Curve

B Crack Growth Curve
B Threshold Stress Intensity

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved
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Bending Fatigue

stress amplitude

Fiwa

( NQEIAN

\

)\ e

stress range

Bending stress:
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SN Curve

Testing t
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Fatigue Seminar
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SN Curve
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The fatigue limit is usually only found in steel laboratory specimens
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Fatigue Damage
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Fatigue Limit Strength Correlation
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< 1000 | 0.5
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0 500 1000 1500 2000
Tensile Strength, MPa

From Forrest, Fatigue of Metals, Pergamon Press, London, 1962
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Fatigue Limit Strength Correlation

Fatigue Seminar

140
950 |— /
/ ® o — 130
: L]
850 - /% o ooo
o —1 120
V o o
— 80 Q Ooo [¢] o
o o0 o — 110
s 750 [~ / Pogg ® o
b /4 8 ° o
E o $ %o o0 o ° — 100
%; V @o (o] o (o] % ° o
= 6501 / 8 o o°
& Qo 9 o ° — 90
Q0
3
o 9 0
% ] T | |
550 +“__ @®g /% Quenched and tempered steels—] 80
: ®
o o0 o 1054 4063 5140
8 2340 4068 5150
4032 4130 5160 —4 70
feeo 4042 4140 8640
asol— ° 4053 4340 9262
: | | i | 60
' 20 25 30 35 40 45 50 55 60 85 70

Hardness, R,

© 2002-2011 Darrell Socie, All Rights Reserved

ksi

8 of 31



SN Materials Data
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Strain Controlled Testing
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Cyclic Hardening / Softening

- 3rd
1st reversal

a) Full i
( l'AEu=v01r]|3;:Ied (b) Partially annealed

Ae = 0.0078

2N, = 8060 reversals 2Ny = 4400 reversals

{c) Cold worked
Ae = 0.0099
2N; = 2000 reversals
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i Stable Hysteresis Loop

Hysteresis loop

Ao
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Strain-Life Data o —¢
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Strain Amplitude >

During cyclic deformation, the material deforms on a path
described by the cyclic stress strain curve
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Cyclic Stress Strain Curve
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Strain-Life Data Ae - 2N;
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Elastic and Plastic Strain-Life Data
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Strain-Life Curve
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Transition Fatigue Life
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HB, Brinell Hardness

From Dowling, Mechanical Behavior of Materials, 1999
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cN Materials Data
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— 93 steels

— 17 aluminums
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Fatigue Life, Reversals
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i Crack Growth Testing
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i Stress Concentration of a Crack

p
/
|<-C— 2 a _>->| KT =1+ 2\/g
p
K ~ 2000

for a crack

a~ 10-3 Olocal = 2000 Gapplied

p~107°

Traditional material properties like tensile strength
are not very useful for cracked structures
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i Stress Intensity Factor

o K=oc.mra

K characterizes the magnitude of the
stresses, strains, and displacements in the
neighborhood of a crack tip

|,f.| Two cracks with the same K will have
2a the same behavior
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i Crack Growth Measurements

[ > o

= | &
2a
I

Cycles
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Crack Growth Data
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Threshold Region

AK ., >Ac[na f(EJ

T A A W
threshold stress intensity f
flaw shape
flaw size

operating stresses
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Threshold Stress Intensity

Fatigue Seminar

AKy, Stress Intensity Threshold, ksifin
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From Dowling, Mechanical Behavior of Materials, 1999
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i Non-propagating Crack Sizes

Small cracks are frequently semielliptical surface cracks

AK;y>Acl.12 —,/na
T
2
a.=0 GB(AKTHj
Ac
Smooth specimen fatigue limit z%

2
a, =2.52[AKTH]

Oy
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i Non-propagating Crack Sizes

1 -
AK.,=5MPaym
0.8 |
0.6 |

04

Crack Size, mm

0.2

0 500 1000 1500 2000
Ultimate Strength, MPa
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Stable Crack Growth
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108

10-9

10-10

Stable growth region

Crack Growth Rate, m/cycle
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Crack Growth Data

Oyieid égz Ferritic-Pearlitic Steel:

10° o 273
o | oim 92 _6 9x1072 (AKMPavm )™
2 L dN
; g& Martensitic Steel:
© o
o
107 4 d; =1.4x1071 (AK MPa+/m )2'25
G P
S ;‘5 Austenitic Stainless Steel:
O &

o | da g 6.1072 (AkMPaym)**

- " dN
5 10 100
AK, MPavm

Barsom, “Fatigue Crack Propagation in Steels of Various Yield Strengths”
Journal of Engineering for Industry, Trans. ASME, Series B, Vol. 93, No. 4, 1971, 1190-1196
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i Things Worth Remembering

Method Physics Size
Stress-Life Crack Nucleation 0.01 mm
Strain-Life Microcrack Growth 0.1-1mm

Crack Growth Macrocrack Growth > 1mm
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Fatigue Made Easy
Similitude

Professor Darrell F. Socie
Mechanical Science and Engineering
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i Seminar Qutline

Historical background

Physics of fatigue

Characterization of materials

Similitude ( why fatigue modeling works )
Variability

Mean stress

Stress concentrations

Surface effects

Variable amplitude loading

10 Welded structures
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i Fatigue Analysis

Material
Data

Fatigue
Life Estimate

Component . Analysis —
Geometry

?
Service

Loading
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i The Similitude Concept

Why Fatigue Modeling Works !
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i What is the Similitude Concept

The “Similitude Concept” allows engineers to
relate the behavior of small-scale cyclic
material test specimens, defined under
carefully controlled conditions, to the likely
performance of real structures subjected to
variable amplitude fatigue loads under either
simulated or actual service conditions.
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i Fatigue Analysis Techniques

Stress - Life

BS 7608, Eurocode 3
Strain - Life

Crack Growth

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 5 of 33



i Life Estimation

Method Physics
Stress-Life Crack Nucleation

BS 7608 Crack Growth
Strain-Life Microcrack Growth

Crack Growth Macrocrack Growth

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved
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Stress-Life Fatigue Modeling

10000

1000

Stress Amplitude, MPa

100
100

Fatigue Seminar

10!

102

The Similitude Concept states that if the
instantaneous loads applied to the ‘test’
structure (wing spar, say) and the test
specimen are the same, then the response
in each case will also be the same and can
be described by the material’s S-N curve.
Due account can also be made for stress

10° 10* 10° 10° 107 _ _ _ :

Cycles concentrations, variable amplitude loading
etc.
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i Fatigue Analysis: Stress-Life

Material | SN curve
Data Ka, Ks, ...

Fatigue
Life Estimate

Component \
Geometry

Service /
A

Loading S, Sm ‘

Analysis —
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Stress-Life

B Major Assumptions:
B Most of the life is consumed nucleating cracks
M Elastic deformation

B Nominal stresses and material strength control
fatigue life

B Accurate determination of K; for each geometry
and material
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Stress-Life

B Advantages:

B Changes in material and geometry can easily be
evaluated

B Large empirical database for steel with standard
notch shapes
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Stress-Life

B Limitations:
B Does not account for notch root plasticity
B Mean stress effects are often in error
H Requires empirical K;for good results
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BS 7608 Fatigue Modeling

The Similitude Concept states that if the
1000 instantaneous loads applied to the ‘test’
structure (welded beam on a bulldozer, say)

\ and the test specimen (standard fillet weld)
are the same, then the response in each

[ERN
o
o

case will also be the same and can be
described by one of the standard BS 7608
Weld Classification S-N curves.

Stress Range, MPa

10

8

o

10° 106 107 1
Cycles
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i Weld Classifications

et e
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i Fatigue Analysis: BS 7608

Material ‘Weld SN curve ‘
Data \
Component . Fatigue
Geometry ‘ Class ‘ Analysis Life Estimate

e
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BS 7608

B Major Assumptions:
B Crack growth dominates fatigue life

B Complex weld geometries can be described by a
standard classification

B Results independent of material and mean stress
for structural steels
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BS 7608

B Advantages:
B Manufacturing effects are directly included
B Large empirical database exists
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BS 7608

B Limitations:

M Difficult to determine nominal stress and weld
class for complex shapes

B No benefit for improving manufacturing process

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 17 of 33



Strain-Life Fatigue Modeling

The Similitude Concept states that if the

1% instantaneous strains applied to the ‘test’
. 1 structure (vehicle suspension, say) and the
% 0.01F test specimen are the same, then the
£ oo01l response in each case will also be the same
;§ 10 and can be described by the material’'s e-N
N curve. Due account can also be made for

o 100 ¢ ae a0r a1 107 Stress  concentrations, variable amplitude
Reversals, 2N; IOading etc
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i Fatigue Analysis: Strain-Life

Material | €N curve
Data cE curve

Fatigue
Life Estimate

Geometry
Service ‘ i /

Loading S, Sm ‘

Component Analysis
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Strain-Life

B Major Assumptions:

M Local stresses and strains control fatigue
behavior

M Plasticity around stress concentrations
B Accurate determination of K;

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 20 of 33



Strain-Life

B Advantages:
B Plasticity effects
B Mean stress effects

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved
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Strain-Life

M Limitations:
B Requires empirical K;

M Long life situations where surface finish and
processing variables are important

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 22 of 33



Crack Growth Fatigue Modeling

The Similitude  Concept
states that if the stress
intensity (K) at the tip of a
crack in the ‘test’ structure
(welded connection on an oil
platform leg, say) and the
test specimen are the same,
then the crack growth
response in each case will
also be the same and can be
described by the Paris
relationship. Account can
also be made for local
chemical environment, if
necessary.

106

10”7

108

109

1010

Crack Growth Rate, m/cycle

10-11

10 100
AK,MPa+/m

= LILBLLILLLL B LLLE B L L I AL B |

1012
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i Fatigue Analysis: Crack Growth

Material
Data

Fatigue

| da/dN curve |
Component
Life Estimate

Geometry
Service /

Loading ‘AS ’ Sm‘

Analysis —
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Crack Growth

B Major Assumptions:
B Nominal stress and crack size control fatigue life
B Accurate determination of initial crack size
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Crack Growth

B Advantage:
B Only method to directly deal with cracks
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Crack Growth

B Limitations:
B Complex sequence effects
B Accurate determination of initial crack size
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i Choose the Right Model

B Similitude
M Failure mechanism
M Size scale
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i Design Philosophy

W Safe Life
B Damage Tolerant
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Safe Life

500 1

N
o
o

Stress Amplitude, MPa

99 90 50 10 1
Percent Survival

10*

10°

106 107 108 10°
Fatigue Life

Choose an appropriate risk and replace critical parts
after some specified interval
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Damage Tolerant

Inspection

Crack size

| Safe Operating Life

»
»

Cycles
Inspect for cracks larger than a, and repair

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved
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i Inspection

A Boeing 777 costs $250,000,000
A new car costs $25,000

For every $1 spent inspecting and maintaining a
B 777 you can spend only 0.01¢ on a car

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved
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i Things Worth Remembering

B Questions to ask
® Will a crack nucleate ?
® Will a crack grow ?
® How fast will it grow ?

B Similitude
B Failure mechanism
B Size Scale
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Seminar Qutline

Historical background
Physics of fatigue
Characterization of materials
Similitude

Variability

Mean stress

Stress concentrations
Surface effects

Variable amplitude loading
10 Welded structures
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Sources of Variablility

customers <« Stress _—
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i “Average” Load History

Take a loading history that produces “average” fatigue
damage and multiply it by a scale factor to obtain the
distribution of loads.




Gumble Probability Plot

99.9 %

99 %

80 %

Cumulative Probability
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Fatigue Seminar

Maximum force from 42 drivers

Gumbel Distribution
42 Data Points
Location 362.94
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Maximum Load Correlation
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Variability in Fatigue Lives

99.9 %

99 %

90 %

50 %

10 %

Cumulative Probability

1%
0.1 %

Airplane (334)

ATV (19) P oy

Tractor (54)
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Calculated fatigue lives for actual service usage data

Fatigue Seminar
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Variablility in Loading
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Fatigue Seminar
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Statistical Variability of Fatigue Life

50

Percent Survival

10

R

\
| L1 1 111l | | I | | N N T | | L1 1 1 111

104 10° 106 107 108
Cycles to Failure

Sinclair and Dolan, “Effect of Stress Amplitude on the Variability in Fatigue Life of 7075T6 Aluminum Alloy”
Transactions ASME, 1953
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P-S-N Curve
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i Variability in Strength and Life

% =S/ (N.)° b~1/10

Suppose S; has a COV =0.1

The variability in N; will be:

COV,, =\/(1+ cov,f —1=4(1+ 0.7 ~1-1.3

A 10% variation in strength results in a factor of 20 in fatigue life
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Strain Life Data for 980X Steel

O
=

Strain Amplitude

103

104

Fatigue Seminar

10-2 F

378 Data Points
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Fatigue Life
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Curve Fitting

O
=

Strain Amplitude

103 =

104

Fatigue Seminar

10-2 C

Ae © ' c
5 = Ef (2Nf)b+8f(2Nf)

Assume a constant slope to get
a distribution of properties
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Fatigue Life
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o; Distribution

99.9 %

99 %

90 %

50 %

10 %

Cumulative Probability

1%

0.1 %
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Material Property Simulation

0.1

Strain Amplitude
[H
Q

104 W ORI T U1 NN U O O 0 0 011 BN N O 0 0011 N S AN AR 171 N SN SN WA T11| B SN R W Eei|
1 10 102 103 104 105 106 107
Fatigue Life

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 14 of 22




i Typical Variabllity

M Pit Size
M Bolt Preload Force
B Surface Roughness
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Pits That Initiated Cracks

Corroded region

/7010-T7651

Pre-corroded specimens

300 specimens

246 failed from pits

Crawford et.al."The EIFS Distribution for Anodized and Pre-corroded 7010-T7651 under Constant Amplitude Loading”
Fatigue and Fracture of Engineering Materials and Structures, Vol. 28, No. 9 2005, 795-808
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Pit Size Distribution

40 -
- 30 Mean = 230
% COV =0.32
=
o
T 20

10

100 200 300 400 500

varea um
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Variability in Bolt Force

99.9 %

99 %

90 %

50 %

10 %

Cumulative Probability

1%

0.1 %

Fatigue Seminar

Force *
L LogNormal Distribution .
200 Data Points 4
Mean 130.45
[ cov 0.14
100 1000
Bolt Force, N

L X 2

Preload force in bolts tightened to 350 Nm

© 2002-2011 Darrell Socie, All Rights Reserved
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Surface Roughness Variability

99.9 %r
Force
L 2
99 9 F LogNormal Distribution .
> 125 Data Points {’
% 90 % | Mean 42.98
. COV 0.10
o
g 50 % " ' —
N Surface Finish, pin 100
E 10wl 3
O $
R
1% | .
L 2
0.1%L

Machined aluminum casting
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i Variability Summary

Source COV
f Service Loading 0.47

Stress < . '
L Environment 0.33
4 Materials 0.12
Strength < Manufacturing 0.14
_  Surface Finish 0.10

n

COV C = \/H(1+cxi2 o1

=1

Largest variability dominates
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Stress - Strength

initial cost
—

design and
test loads

customer strength

usage

ﬁ

warranty cost
reputation cost
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i Things Worth Remembering

B Fatigue data inherently contains a lot of
variability
B The variability is predictable and guantifiable
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Fatigue Made Easy

Mean Stress

Professor Darrell F. Socie
Mechanical Science and Engineering
University of lllinois
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i Seminar Qutline

Historical background

Physics of fatigue

Characterization of materials

Similitude (why fatigue modeling works)
Variability

Mean stress

Stress concentrations

Surface effects

Variable amplitude loading

10 Welded structures
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Mean Stresses

stress

I mean stress
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General Observations

B Tensile mean stresses reduce the fatigue life
or decrease the allowable stress range

B Compressive mean stresses increase the
fatigue life or increase the allowable stress
range

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 3o0f 31



Mechanism

Fatigue damage is a shear process J2

Tensile mean stresses open /(
microcracks and make sliding easier

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 4 of 31



Goodman 1890

Mechanics Applied to Engineering - Jeatic breaking stress b
John Goodman, 1890
o8
3
“.. whether the assumptions of the » <
theory are justifiable or not .... We 7 ﬁvt"'y
adopt it simply because it is the g m,ﬂ"‘
easiest to use, and for all practical i)
purposes, represents Wohlers data. Tersion,
2erq stress,
DF 2 0 OZ o 76 2 7
Compressipre
SuItimate = Smin + 2 AS
o4
[/

Fic. 517
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Goodman Diagram

10° cycles

Alternating stress
w

107 cycles

0 u

-1 Mean stress R=1

R

&{&) [1_ Sj
2 2 R=-1 SuItimate
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Test Data ( 1941 )

1.2

1.0

0.8

0.6

Fatigue Limit

0.4

Alternating Stress

0.2

O | | | | | | | | |
0 01 0.2 03 04 O5 06 07 08 09 10
Mean Stress

Ultimate Strength
J.O. Smith, The Effect of Range of Stress on the Fatigue Strength of Metals,
Engineering Experiment Station Bulletin 334, University of lllinois, 1941
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Compression

beneficial ~« -

~
~
~
~
~
~
S ~
~. Se
P d
no influence -7
P P d
P P d
P d < -
detrimental _ -
P - -
-S

I o
c
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Modified Goodman ( no yielding )
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Mean Stress Influence on Life

1000 [0

100

Relative Fatigue Life

Mean Stress
Ultimate Strength
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Stress Concentrations

Ag The elastic material surrounding
the plastic zone around a stress
concentration forces the material
to deform in strain control

Plastic
Zone

Ag
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Mean Stresses at Notches

elastic plastic

Notch — Nominal —p Notch

Nominal Nominal Notch

& V/ € €

AN

Nominal mean stress is less Nominal mean stress is greater
than notch mean stress than notch mean stress
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Morrow Mean Stress Correction

Q
=

o
o ©
o o
gt

Strain Amplitude

? Gmean
104 3 E \

10'5 i Ll Ll Ll Ll 1l Ll il Ll L 1111l Ll
100 101 107 103 104 10° 106 107

Reversals, 2N;

Ag G'—Gmean - c
> = = (2Nf)b+8f(2Nf)
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i Smith Watson Topper

o)

I Ae o, °

0]
max
e 2 E

M :

(——Ag——>

(2N; )2b + 5;8;‘ (2N; )b+c
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Mean Stress Relaxation
_ 4‘:1:”:;1.9\

/IOth Cycle
I00th Cycle

T, ksi
120 - I000 th Cycle ~
80 -
40 |
. ‘ AS = 7 ksi
478 100 }
oy . v/ ‘ L. €
0.004 0.012 0.016 J.
| ' S, ksi
- -40 | ‘
0 Time

Load History of
Notched Specimen
FIG. 7—Cyclic softening and relaxation of mean stress under Neuber control
(Ti-8Al-1Mo-1V, K; = 1.75).

Stadnick and Morrow, “Techniques for Smooth Specimen Simulation of Fatigue Behavior of Notched Members”
ASTM STP 515, 1972, 229-252
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Loading Histories

Fatigue Seminar

I

Saf \es /N /N /N .5,

g2 \Z VoV
Load History A

g {

LI ANWA A awi

g5 / VARV VAl

Load History B
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Test Results

582, ksi

Fatigue Seminar

100

90

80

70

60

50

40

30

io®

Notched Specimen
Constant Amplitude at AS,

® Notched Specimen
Lood History A (See Fig. 4)

O Smooth Specimen Simulation
Load History A

& Notched Specimen
Load History B

& Smooth Specimen Simulation
Lood History B

10! to® | 10* | 107
2 Ny, Reversols To Failure
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Crack Growth Physics

Maximum load ©

AU%UUUU AAA

Minimum load ©

T~
e ~Q

Mean stresses in plastic
o zone are small
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Mean Stress Effects

1 1.E02
| 17-4PH Steel o
H1050 8 0
AD o
1€-03 | ob & %0

da/dN , mm/cycle

1.E-04

1.E-05

R-ratio
00.04
0o0.4
A0.67
©0.8

TTY

10 100
AK , MPa-m®®

da _ CAK"™
dN  (1-RY)
0<y<0.5

From: Dowling and Thangjitham, An Overview and Discussion of Basic Methodology for Fatigue,
ASTM STP 1389,2000, 3-38

Fatigue Seminar
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Compression

Crack open

Crack closed
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Compressive Stresses

Crack opening level

Stress

Vo

Compressive stresses are not very damaging in crack growth

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved
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i Sources of Mean/Residual Stress

B [ oading History
B Fabrication

B Shot Peening

H Heat Treating

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 22 of 31



Loading History

Tension overloads produce favorable
compressive residual stress /

Compressive overloads produce
unfavorable tensile residual stress

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 23 0of 31



Fabrication

HO
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Cold Expansion

1965 Basic Cx process conceptualized (Boeing)

(;N-:asecap

The split sleeve is
slipped onto the
mandrel, which is
attached to the
hydraulic puller unit.

Mandrel

‘ Split Sleeve - g
“Puller Unit

The mandrel and sleeve are

inserted into the hole with the

nosecap held firmly against the

workpiece.

When the puller is activated,
the mandrel is drawn
through the sleeve radially
expanding the hole.

Courtesy of Fatigue Technology Inc.
Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 25 0f 31




Theory of Cold Expansion

N 4

+ TENSION

Residual Compressive
Stress Zone

10-15% Tensile
Yield Strength

Radial Stress / ¥ Tangential Stress

- COMPRESSION

«——> Compressive Yield Strength

Courtesy of Fatigue Technology Inc.

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved
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Fatigue Life Improvement

300

200 [~

Nominal Stress

| | | | |
103 104 10° 106 107 108

Fatigue Life

0

Courtesy of Fatigue Technology Inc.
© 2002-2011 Darrell Socie, All Rights Reserved
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Shot Peening

YA

/ ¥ / —
®
[ % O e e e ety
Py
n
L i
i -200
'©
=
% -400 T
)
o
-600 ] ] ] ]
0 0.2 0.4 0.6 0.8
Depth (mm)

Residual stress in a shot peened leaf spring
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Shot Peening Results

©

o

= 1500 [

3 Shot Peened S S

> - S =_u
) Smooth & Notched L=
& 1000 [ -

—i

X

(Q\|

©

< 500 - Smooth

‘@) f— P

E’ ,/” / T~

o et - Notched

5) O ,”’ | | | | |

® 0 500 1000 1500 2000 2500

Ultimate Tensile Strength, MPa

www.metalimprovement.com
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Heat Treating

- 5_5 1000 r
7 = 500
2 2
T s 0 Circumferential
= 2 500
= S
5 = -1000

O]
0 - - - X 1500 - -
0 5 10 15 0 5 10 15
Depth, mm Depth, mm

50 mm diameter induction hardened 1045 steel shaft
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i Things Worth Remembering

M L ocal mean stress rather than the nominal
mean stress governs the fatigue life

B Mean stress has the greatest effect on crack
nucleation

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 31of 31
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Fatigue Made Easy

Stress Concentrations

Professor Darrell F. Socie
Mechanical Science and Engineering
University of lllinois
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Seminar Qutline

Historical background
Physics of fatigue
Characterization of materials
Similitude

Variability

Mean stress

Stress concentrations
Surface effects

Variable amplitude loading
10 Welded structures
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Stress Concentration Factor

a
PXCH PRBGE B RN Gl o,..n=0. | 1+2 |—
SRCEN ‘e e it S : local applied
SERet) el | .»A;y H :

p B S SR P
'— g .- l.' - j"".f-- :I-' o
of Lt TR

¥ o e i\

Inglis Solution 1910

<« 95 —>

o

Local stress

Applied stress
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Define K_ and K_ after Yielding

S,e Define: nominal stress, S
nominal strain, e

- notch stress,
)Q notch strain, ¢

Stress concentration K_=

G
S
€
e

Strain concentration K_=
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Stress and Strain Concentration

A

K. K K ==

Stress/Strain Concentration

K
. K o}
First yielding K.—=>1 K =—

Nominal Stress
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K

%)

Stress (MPa)

Strain

5o0f 31
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Neuber’'s Rule

K.S
Actual stress
o

g |

al

< € K.SK,e=occ¢

% \_Y_J

L

N Stress calculated with

elastic assumptions
>
K&
Strain
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Neuber’s Rule for Fatigue

Stress and strain amplitudes
KiASK,Ae AcAe

2 2 2 2

Elastic nominal stress
Ae AS

2 2E
Substitute and rearrange

K== |E=2 =

AS \/ Ac Ag
2 2 2

The product of stress times strain controls fatigue life
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SN Materials Data

10000
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Fatigue Life, Reversals
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cN Materials Data

— O3 steels

—— 17 aluminums
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Fatigue Life, Reversals
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1 10 102 103 104 10° 106 107

Fatigue Life, Reversals
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A Dilemma

Stress analysis and stress concentration factors are
iIndependent of size and are related only to the ratio
of the geometric dimensions to the loads

Fatigue Is a size dependent phenomenon

How do you put the two together ?

Fatigue Seminar © 2002-20011Darrell Socie, All Rights Reserved 11 0f 31



Similitude
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Fatigue of Notches

400 [
©
al
= 300
)]
N
L
& 200
[&
-E 100 =
=
@)
Z
104 10° 10° 107 10°

Fatigue Life

From Dowling, Mechanical Behavior of Materials, 1999
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Notch Size

in
NS

Large Notch Small Notch
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i Microstructure Size

Low Strength High Strength
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i Stress Gradient

\

) 10
~ X

Ky

Y,

Low K, High K,
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10
-
S i K, = K,
© 8
c
3
c 6
3
% Kf
O l
= 4 Experiments
)
=
g 2r
D
L
O | | | | |
0 2 4 6 8 10

Calculated stress concentration
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Peterson’s Equation

1.8
a=o.025(207OMPa] mm
4 G,
3T K. -1
K,=1+—
P

1k
O I OO N 171 O I I O 1 T T I I OO T O T 1T T O W /11 I WAl
104 10-3 10-2 01 4 1 10 102 103

p
No effect when p << a

Full effect when p >> a

Fatigue Seminar © 2002-20011Darrell Socie, All Rights Reserved 18 of 31



Peterson’s Constant

0.7 k

0.371

0.03

500 1000 1500 2000

Ultimate Strength, MPa
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Static Strength

hole slot diamond edge
K,=25 K,=5 K, = 20 K, =20
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1018 Steel Test Data

100 f S

>
' /

S eof edge / \
o

diamond
slot
40 f hole
20 |
0
0 2 4 6 8 10

displacement, mm
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Notched SN Curve

10000 -
©
al
E_ Smooth specimen data
S
-
= 1000 l
3
< | Ky
& Notched specimen
=
7 T
100 [ NN Lol Lt Ll [ I I Ll [ N
100 101! 102 103 104 10° 106 10/

Cycles
Stress concentrations are not very important at short lives
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Crack Growth Data

106
]
o 107 _
g Nonpropagating cracks
g 108
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Frost Data

=| E

<l 3

e S

2 2

n| s
N

1.0

Rotating bending
Notched bar
Notched plate

0.8

0.6

0.4

nucleation fracture

A A
O |
o ®

! TR T T T R T T T

0.2 1 / Q/A nonpropagating cracks
Kt —— /9 )T

O ] | l l | : I

. 3 5 7 9 11 13 15

Frost, “A Relation Between the Critical Alternating Propagation Stress and Crack Length for Mild Steel”
Proceedings of the Institute for Mechanical Engineers, Vol. 173, No. 35, 1959, 811-836

Fatigue Seminar
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Significance

For K, > 4, the notch acts like a crack with a depth D

AK

NS

Sfl —

K, does not play a role for sharp notches !

A stress concentration behaves like a crack
once a stress concentration becomes large (Kt > 4)
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i Cracks at Notches
TS TmS Is
> [
Ja- al- Joal-

a<<D a>>D
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Stress Intensity Factors

0.6

30
K=K,S+Vra
K 20|
— K=S,/nlD+a
sVD vl )
1.0 I~
0 | | | | | |
0 0.1 0.2 a 0.3 0.4 0.5
D
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Cracks at Holes

Once a crack reaches 10% of the hole radius,
It behaves as if the hole was part of the crack

Fatigue Seminar © 2002-20011Darrell Socie, All Rights Reserved 28 of 31



i Specimens with Similar Geometry

Fatigue Seminar

Ultimate Strength 780 MPa
Yield Strength 660 MPa

© 2002-20011Darrell Socie, All Rights Reserved
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Test Results

_ K =10.7
1000 £ strength Limited o K=24
@ - - (= 2.
e o
3 2
=
g . Iiatigue Strength Dominated
o Crack Growth Dominated —® .
D 100 [
p -
C—G -
g i
g i Threshold Stress Intensity Dominated
= -
1 Ll 1 1l gl gl L 1l 1 gl A NRET] |
1 10 100 103 104 10° 106 107

Total Fatigue Life, Cycles

Fatigue Seminar
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i Things Worth Remembering

B Fatigue may be thought of as a failure of the
average stress concept, consequently,
fatigue usually begins at stress concentrators
which are most frequently located on the
surface

B The severity of a stress concentrator in
fatigue is size dependent

B Small stress concentrators are more
effective in high strength materials
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Fatigue Made Easy

Surface Effects

Professor Darrell F. Socie
Mechanical Science and Engineering
University of lllinois
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i Seminar Qutline

Historical background

Physics of fatigue

Characterization of materials

Similitude (why fatigue modeling works)
Variability

Mean stress

Stress concentrations

Surface effects

Variable amplitude loading

10 Welded structures
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Modern View of the Fatigue Limit

The fatigue limit is the stress where a crack may
nucleate but will not grow through the first
microstructural barrier such as the grain size,
pearlite colony size, prior austenite grain size,
eutectic cell size or precipitate spacing.

Crack

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 2 of 27



Intrinsic Flaws

Little effect of surface pit because Large effect of defect because
It is smaller than the grain size it is larger than the grain size

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 3 of 27



Surface Finish Influence

Method Physics Size
Stress-Life Crack Nucleation 0.01 mm
Strain-Life Microcrack Growth 0.1-1mm

Crack Growth Macrocrack Growth > 1mm

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved

Influence of
Surface Finish

Strong
Moderate
None
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Sources of Surface Effects

B Machining
B Cutting
B Grinding
B Corrosion
B General
M Pitting
B Processing
B Cutting/Shearing
B Casting
® Forging
® Plating
B Foreign Object Damage
® Nicks
B Scratches

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 5 of 27



Machining

Cracks start in machining marks not in the direction of the
maximum principal stress

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 6 of 27



Casting

100 um

Surface flaw in gray cast iron
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Nodular Iron Surface

Flake graphite formed on the surface of a nodular iron casting

Starkey and Irving, “A Comparison of the Fatigue Strength of Machined and As-cast Surfaces of SG Iron”
International Journal of Fatigue, July, 1982, 129-136

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 8 of 27



Test Data

Fatigue Seminar
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) .
S
2 102}
g : 83300 Machined Surface
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104
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Fatigue Life, Reversals
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Surface Reduction Factors

Polished
10
Ground 1.0
0.8 } 11.2
Machined
0.6 | 11.7

Surface Factor
Fatigue Notch Factor

04t Hot Rolled l,s
0.2

Forged >0
O 1 1 1 1 1 1

400 600 800 1000 1200 1400 1600
Ultimate Strength, MPa

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 10 of 27



Noll and Lipson 1945

1000 .
@
o 800
=
o Ground
£ 600
=
. — Machined
o 400
©
LL
200 *\‘:"\\ Hot Rolled
Forged
0 .

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Ultimate Strength, MPa
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Hiam and Pietrowskil 1978

Driven for 1 or 2 years

In Southern Ontario

before making specimens
to evaluate corrosion effects

Strain controlled fatigue testing

Hiam and Pietrowski, “The Influence of Forming and Corrosion on the Fatigue
Behavior of Automotive Steels”, SAE Paper 780040, 1978

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 12 of 27



i K: for pitting

Hot Rolled Corroded

Surface Surface
950X 1.12 1.49
0.06% C HSLA 1.18 1.65
0.18% C HSLA 1.90

Surface finish factor predicts K; = 1.6 for a Hot Rolled Surface

from Hiam and Pietrowski
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Pit Depth Effects on Life

106 E
B 950X Steel
" i
Q i
o O
U -
qu o
3 105 |
q) -
L -
o) i
© i
u —
104 | | |
0 0.1 0.2 0.3
Pit Depth, mm

from Hiam and Pietrowski
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Fatigue Notch Factor for Pits

1.5

1.4

1.3

1.2

1.1

1.0

0

0.1 0.2 0.3
Pit Depth, mm

Fatigue Seminar
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Suspension
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Spring Failures
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Microscopic Examination

Corrosion Pits
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Chrome Plating

500

D
o
o

Stress Amplitiude, MPa
w
o
o

200

~~_ n Shot peened and

_ RN chrome plated

- Base steel [
@)
@)

Chrome plated
L a0 a0 sl L 0 a0 a1l Lo vl NN |
104 105 1068 107 108

Life, Cycles

Almen, “Fatigue Loss and Gain by Electroplating” , Product Engineering, Vol. 22, No. 5, 1951, 109-116

Fatigue Seminar
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Hard Chrome Plating

coating 19 pm

In addition to cracks, coatings frequently have high tensile residual stresses

Metals Handbook, Volume 9, Fractography and Atlas of Fractographs
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Galvanized Steel

225 MPa

Crack Density mm-

0 0.5 1
Life Fraction

Vogt, Boussac, Foct, “Prediction of Fatigue Resistance of a Hot-dip Galvanized Steel”
Fatigue and Fracture of Engineering Materials and Structures, Vol. 23, No. 1, 2001,33-40
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Fatigue Limit for Galvanized Steel

400
300 | \
E ® Uncoated Fatigue Limit
'J
S 200}
S’ S :AKTH
LCE FL /TCt
100 L ] L1 1 1l ] ] L gl
10 100 1000

Coating Thickness, t um

Coatings can be modeled with a crack equal to the coating thickness
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Foreign Object Damage

http://www.eng.ox.ac.uk/~ftgwww/frontpage/fod2.html
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Foreign Object Damage

00

http://www.eng.ox.ac.uk/~ftgwww/frontpage/fod2.html
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Upper Control Arm
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Serial Number
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i Things Worth Remembering

B Fatigue crack nucleation is a surface phenomena
and everything about the surface affects the fatigue
life

B Most of the design rules are conservative having
been developed for materials of the 1950’s
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Fatigue Made Easy

Variable Amplitude Loading

Professor Darrell F. Socie
Mechanical Science and Engineering
University of lllinois
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i Seminar Outline

Historical background

Physics of fatigue

Characterization of materials

Similitude (why fatigue modeling works)
Variability

Mean stress

Stress concentrations

Surface effects

Variable amplitude loading

10 Welded structures
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Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 1of 25



i Variable Amplitude Loading

How to you identify cycles ?

How do you assess fatigue damage for a cycle ?
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Rainflow Cycle Counting

e EIPote L RAE 0 FRAE

ra) RRARBOE @ 7%) RFRASDM

What could be more basic than
learning to count correctly?

Matsuishi and Endo (1968) Fatigue of Metals Subjected to Varying Stress — Fatigue Lives Under
Random Loading, Proceedings of the Kyushu District Meeting, JSME, 37-40
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Rainflow

strain

Counts 1/2 cycles
B
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i Rainflow and Hysteresis

- A
B )C
D — E
F G
—
H —

A
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i Cumulative Damage

High - Low

Ty e

— nH > nL—>|

Low - High

N\W\ | V.... I ilS_H

|<— nL >le nH —»l
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Linear Damage

AS,, \

I\IfH |\If L
Miner’'s Rule:
n n n
Damage = =_—H 4 L
Z NF Nf H Nf L
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i Nonlinear Damage

1.0 /\ A
- 0.8F 2D =0.7
o
Ey A
o A \
S 0.4
8 >D=1.3
0.2 Ag=0.004 U v
O ‘ | |
0 0.2 0.4 0.6 0.8 1.0
Cycle ratio, Wn 2D ~1
f
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Periodic Overload Results

0-1 3 The fatigue limit is reduced by a factor of 3
when a few large cycles are applied
S
S 0.01 —
=
S
<
=
© 10°F
(7) N
104 el l il
10 100 103 104 10° 106 107 108 10°

Fatigue Life

Bonnen and Topper, “The Effects of Periodic Overloads on Biaxial Fatigue of Normalized SAE 1045 Steel”
ASTM STP 1387, 2000, 213-231
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Fatigue Damage Calculations

. 10000;
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Crack Growth Data
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Crack Growth Data

] 100
| e
g
E 10 2,
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Crack Growth Rate, m/cycle

Damage o« AS®
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Multiple Choice

Which cycles do the most fatigue damage ?
(a) a few large cycles
(b) a moderate number of intermediate cycles

(c) a large number of small cycles
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Fatigue Data

1000 p
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Amplitude
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Loading History

Bracket.sif-Strain_b43
750

500

250 |

Strain Gage (ustrain)
o

-250 |
-500 -
-750 * rf_000.sif-Strain_b43
0 50 100 150 200 250 300
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<
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@)
0

1500 750
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Slope =3

Damage

w
=
ol
)

% damage

- -750

1500 750

Fatigue Seminar © 2002-2011 Darrell Socie, All Rights Reserved 16 of 25



Damage
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Slope =10

Damage

1500 750
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Mechanisms and Slopes

Crack Nucleation

104

&
=
-
100 ¢ Structures - :
= ﬁ 10
= ¢
3 D 100
o 100 10* 102 10% 10* 105 105 107
— Cycles
5
S Crack Growth 3 100
g ]
L]
103 104 10° 108 107 108 1,0 2
Total Fatigue Life, Cycles 5 2
<

A combination of nucleation and growth )
106 107 10® 10° 100 10 1012
Crack Growth Rate, m/cycle
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Equivalent Load

Equivalent constant amplitude loading

ZN:ASi”
AS = /12
N

Typically n ranges from 4 to 6 for structures

N cycles at an amplitude of AS does as much
damage as the entire loading history
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SAE Keyhole Specimen

Bracket

|
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SAE Keyhole Test Data

ManTen RQC 100
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i How Many Cycles ?

Engine:
2 starts/day for 10 years = 7000 cycles
3000 rpm for 100,000 miles (2000 hrs) = 3.6 x 108 cycles
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i How Many Cycles ? (continued)

Bracket.sif-Strain_b43

* > 2 minutes

0 50 100 150 200 250 300

Time (Secs)

Bracket Vibration:

0.5 per minute for 100,000 miles (2000 hrs) = 60,000 cycles
12 hz continuous vibration for 2000 hrs = 8.6 x 107 cycles

750

500

250

-250 -

Strain Gage (ustrain)

-500 -

-750
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i Things Worth Remembering

B Rainflow counting is employed to identify
cycles

B The slope of the fatigue curve ( damage
mechanism) has a large influence on how
much damage iIs caused by smaller cycles
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Fatigue Made Easy

Welded Structures

Professor Darrell F. Socie
Mechanical Science and Engineering
University of lllinois
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Seminar Outline

Historical background

Physics of fatigue

Characterization of materials

Similitude (why fatigue modeling works)
Variability

Mean stress

Stress concentrations

Surface effects

Variable amplitude loading

10 Welded structures

© 0N OhAWNRE

Fatigue Seminar © 2002-2010 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 1of 34



Analyzing Welds

B Nominal Stress

B Structural or Hot Spot Stress
B |_ocal Stress Strain

B Crack Growth
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Nominal Stress

Nominal stress approaches are based on
extensive tests of welded joints and
connections. Weld joints are classified by
type , loading and shape. For example, a
transversely loaded butt weld. It is
assumed and confirmed by experiments that welds of a
similar shape have the same general fatigue behavior so
that a single design SN curve can be employed for any
weld class. The designer need only determine the nominal
stress and select a weld class. There is no need to directly
consider the stress concentration effects of the weld.
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Structural Stress

| Structural stress approaches are often
| referred to as "hot-spot methods". The

structural stress includes the
macroscopic stress concentrating
effects of the weld detail but not the
local peak stress caused by the notch
at the weld toe. There are various methods used to
determine the structural stress. They involve
extrapolating the computed or measured stresses from
two points near the weld to a structural stress at the weld
toe. This method works in situations where there is no
clear definition of the nominal stress.
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Local Stress Strain

Local stress or strain approaches
Include both the macroscopic
stress concentration due to the
weld shape and the local stress
concentration at the weld toe. To
apply traditional methods of fatigue analysis to
welds, an appropriate value of the stress
concentration factor and residual stress must be
selected. Although the smallest radius produces the
largest stress concentration factor, its effect in
fatigue is smaller because of the gradient effect. As
a result there is a critical radius for fatigue that can
be used to compute the fatigue notch factor.

Fatigue Seminar © 2002-2010 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 5of 34



Crack Growth

Many weld details have planar
lack of fusion defects. This is
particularly true of fillet welds. In
I this case fracture mechanics
models for crack growth are the most appropriate
fatigue technology.
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i Nominal Stress Weld Classifications
D g E @
F2$ G
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BS 7608 - Steel

Stress Range, MPa
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Crack Growth Data

106 -

Crack Growth Rate, m/cycle
=
o
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Barsom, “Fatigue Crack Propagation in Steels of Various Yield Strengths”
Journal of Engineering for Industry, Trans. ASME, Series B, Vol. 93, No. 4, 1971, 1190-1196
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Nominal Stress - Aluminum
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Sharp, “Behavior and Design of Aluminum Structures”,McGraw-Hill, 1992
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Crack Growth Data
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S Steel welds are 3 times
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Residual Stress from Welding

X X
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i Weld Toe Residual Stress

Yield
stress

v

Maximum stress at the weld toe
IS nearly the same for any cycle
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Mean Stress Effects

B As welded structures usually have the
maximum possible mean stress

W Stress relief, peening, etc. will have a
substantial effect on the fatigue life
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Butt and Fillet Weld Test Data

The good welds
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i Weld Terminations

1000 ¢ The bad welds
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i Sources of Inherent Scatter

m Weld quality

m Mean, fabrication and residual stresses
m Stress concentrations (geometry)

m Weldment size

m Material properties

Opportunities for Improvement !

Fatigue Seminar © 2002-2010 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 18 of 34



The Good and Bad

Good weld design

=

Bad weld design

fd <& oo
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Nominal Stress ?
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Stress Distributions iIn Weldments

\\\
£ S %

Various stress distributions in a T-butt weldment with transverse fillet welds;
Normal stress distribution in the weld throat plane (A),

Through the thickness normal stress distribution in the weld toe plane (B),
Through the thickness normal stress distribution away from the weld (C),
Normal stress distribution along the surface of the plate (D),

Normal stress distribution along the surface of the weld (E),

Linearized normal stress distribution in the weld toe plane (F).
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Finite Element Models
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Stress magnitudes and distributions obtained from various FE
models
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Peak and Hot Spot Stress

S »)
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i Physical Meaning of Hot Spot Stress
o 4

o Gp
’ P
t —
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Fatigue Seminar

Hot Spot SN Curves

Table 3. Hor spor 5-N curves for sreel plates up to 25 mm thick.
Joint Description Quality FAT | Aggy |
Egj’) Butt joint As-weldad, NDT. 100 74 |02
Cruciform or
T-joint with K-butt welds,
;' full penetration | no lamellar tearing.
welds
Non-load Transverse non-load
carrying fillet | carrying attachment,
5 | welds not thicker than the main
» plate, as-welded. 100 74 |03
Bracket end,
welds either
) welded around
) or not Fillet weld(s) as-welded
Cover plate
_-L ~ | ends and
|t similar joints
Cruciform joint
with load-
D carrying fillet
welds
Fillet weld(s) as-welded | 90 66 |03
Lap joint with
L load-carrying
fillet welds
L £ 100mm | Type b” joint
[ with short Fillet or full penetration
& attachment weld, as-welded. 100 | 74 |01
L > 100 Type “b” jomt
mm with long Fillet or full penetration
attachment weld, as-welded. a0 66 01
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Typical Butt Weld
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Macroscopic LOF
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i Weld Flaws

Even good welds contain initial crack like flaws
0.1 to 1 mm long. Reducing the size or eliminating
these flaws will substantially improve fatigue lives.
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i Weld Improvement

B Reduce weld toe stresses
B Stress relieve
B Improve local geometry
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Macroscopic Shape
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Fatigue Seminar

5T 0
t
4 r
B ~ 0.3 axial

3 | B ~ 0.2 bending
2 | K, -1

DK =1+ - S —

| 1+~
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A 4

p=a Weld toe radius

K, . =1+0.15S vt MPavm
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Things Worth Remembering

M [ ocal weld toe stresses, geometry and flaws
control the life of weldments
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